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In this paper, a modified leap-frog finite difference (FD) scheme is developed to solve Non linear Shallow
Water Equations (NSWE). By adjusting the FDmesh system andmodifying the leap-frog algorithm, numerical
dispersion is manipulated to mimic physical frequency dispersion for water wave propagation. The resulting
numerical scheme is suitable for weakly nonlinear and weakly dispersive waves propagating over a slowly
varying water depth. Numerical studies demonstrate that the results of the new numerical scheme agree well
with those obtained by directly solving Boussinesq-type models for both long distance propagation, shoaling
and re-fraction over a slowly varying bathymetry. Most importantly, the new algorithm is much more
computationally efficient than existing Boussinesq-type models, making it an excellent alternative tool for
simulating tsunami waves when the frequency dispersion needs to be considered.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the past several decades, several numerical models have been
developed for calculating transoceanic tsunami propagation. Most of
these numerical models are based on the Shallow Water Equations
(SWE). Because it is essential to quickly produce numerical results for
tsunami earlywarning system, SWE-basedmodels adopt explicitfinite
difference schemes (e.g., Liu et al., 1995; Titov et al., 2001). These
models have been implemented in tsunami earlywarning systems and
have been successfully applied to several recent tsunami events.

For many tsunami events, the width of a ruptured area (fault
plane) is much larger than water depth (e.g., 200 km vs. 3 km in the
2004 Sumatra earthquake (Wang and Liu, 2006)) and the resulting
wavelength of the leading tsunami wave is also much larger than the
water depth in the deep-ocean. Therefore, the frequency dispersion is
indeed negligible during the tsunami propagation phase. However,
historically there are tsunami events in which the width of fault plane
is relatively small (e.g., 18.3 km in Algerian earthquake in 2003 (Wang
and Liu, 2005) and the frequency dispersion plays a role in the
determination of the leading wave height. It is also well known that
the effects of frequency dispersion are accumulative and become
increasingly important as tsunamis travel a long distance (Mei, 1989;
Madsen et al., 2008). This becomes an important issuewhen tsunami's
global impacts are assessed (Titov et al., 2005b). Finally, in the state of

arts approach for establishing a tsunami early warning system (e.g.,
Wei et al., 2003; Titov et al., 2005a), the anticipated fault plane is first
divided up into many small “fault plane elements”. Numerical results
for tsunami propagation in the deep-ocean basin corresponding to a
prescribed seafloor displacement form on each fault plane element
are pre-calculated and stored for tsunami forecasting purpose (Titov
et al., 2005a). We note that even if the width of the entire anticipated
fault plane is very large in comparison with the water depth, the
width of the “fault plane element” might not be so if the spatial
inhomogeneity is anticipated. Therefore, the effects of frequency
dispersion need to be considered in the pre-calculation process.

On the other hand, tsunami propagation models based on
Boussinesq-type (BT) equations are capable of considering frequency
dispersive effects from shallow to intermediate water (Nwogu, 1993;
Wei and Kirby, 1995; Kirby et al., 1998; Lynett et al., 2002; Lynett and
Liu, 2004a,b; Hsiao et al., 2005; Lynett, 2006, 2007; Grilli et al., 2007).
However, because of the appearance of higher order terms associated
with the frequency dispersion, the algorithms for BT models call for
finer spatial and temporal resolution and higher-order numerical
algorithms, so that numerical dispersion and truncation errors will
not affect the accuracy of numerical solutions. The required finer grids
as well as high-order numerical algorithm make BT models much
more computationally expensive, not to mention that implicit
schemes are usually adopted to solve BT equations for stability
reason. Extremely high CPU cost rules out the application of BT
equation models for large-scale tsunami simulations.

Imamura et al. (1988) (hereafter IM88) presented a FD model for
the simulation of transoceanic tsunamis, which solves the Linear
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ShallowWater Equations (LSWE) using the explicit leap-frog scheme.
The frequency dispersion terms neglected in the LSWE are taken into
account by utilizing the numerical dispersion inherent in the leap-frog
FD scheme. This is done by choosing grid size and time step according
to a specified criterion. However, the frequency dispersion effects
oblique to the principle axes of the computational domain were not
properly represented in the original algorithm and the method was
limited to constant water depth. Cho (1995) (hereafter CH95)
improved upon IM88's numerical algorithm so that frequency
dispersion effects are correctly included in all directions of tsunami
propagation. Consequently, the numerical algorithm actually produce
numerical results satisfying the traditional Boussinesq equations in a
constant water depth.

When the frequency dispersion is important in simulating
tsunami propagation over a varying water depth, the frequency
dispersion effects need to be carefully considered at every grid point
in the entire computational domain. Thus, following the framework
of IM88 and CH95, the grid size needs to be locally adjusted
according to the time step size and the local water depth, which
makes the implementation of these algorithms somewhat difficult.
Yoon (2002) developed a new FD scheme that satisfies the local
frequency dispersion requirement for a varying water depth while a
uniform grid system is still employed. In Yoon's method a hidden
moving grid system determined locally from the condition suggested
by IM88 is introduced. The physical variables associated with the
hidden moving grid system are obtained by interpolating the
variables assigned on the actual uniform grid points. Yoon (2002)
demonstrated that this scheme provides significant improvements
on the frequency dispersion effects compared to those of IM88 and
CH95. Chen et al. (2000) also presented a numerical scheme to
adjust the numerical dispersion terms and achieved improvements
similar to that of Yoon (2002). However the range of adjustment is
very limited.

More recently, Yoon et al. (2007) developed another scheme in
which the linearized BT equations is resolved with an explicit FD
method. The resulting numerical dispersion is again used to improve
the physical frequency dispersion. We note that in Yoon et al.
(2007) the BT equations were combined into a wave equation in
terms of the free surface displacement. A finite element (FE) version
of this model is also available in Yoon et al. (2008). Since their
models are developed based on linearized Boussinesq equations and
the variation of water depth is also taken into account, they show
good performance for dispersive waves over variable water depth
and the computational efficiency is very high. However, their
models are only applicable for linear waves. As tsunamis shoal
onto a continental shelf, nonlinearity gradually plays a significant
role in the transformation. Linear model is no longer useful.
Moreover, since only free surface elevations are solved from the
models by Yoon et al. (2007, 2008) and the velocity field must be
solved separately, the estimation of the computational efficiency is
not necessarily conservative.

In this paper, a modified explicit leap-frog finite differencemethod
is proposed to solve the Nonlinear Shallow Water Equations (NSWE)
over a slowly varyingwater depth. In the new algorithm, with the idea
of hidden adjusted grid system proposed by Yoon (2002), the leading-
order terms of the numerical truncation errors in solving the NSWE
are manipulated to recover the physical frequency dispersion
neglected in the NSWE. As a result, the resultant modified shallow
water equations together the leading-order truncation error terms
due to numerical discretization recovers the classical form of
Boussinesq equations. Numerical studies show that the proposed
algorithm is capable of adequately simulating evolutions of weakly
nonlinear and weakly dispersive waves over a constant or a slowly
varying water depth. Most importantly, the proposed model still
adopts explicit FD schemes and has a much higher computational
efficiency than existing BT models.

2. Governing equations

By introducing three typical length scales: wave amplitude a0,
wavelength l0 and water depth h0, the following dimensionless
variables can be defined: η=η′ /a0, (x,y)=(x′,y′) / l0, H=H′ /h0,
P = P′= a0

ffiffiffiffiffiffiffiffi
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, and t = t′
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= l0, in

which t′ denotes dimensional time; P′ and Q′ are the depth-averaged
dimensional volume fluxes in the x′ and y′ directions, respectively;
P=Hu and Q=Hv with H=�η+h being the total dimensionless
water depth, η the dimensionless free surface elevation and h the
dimensionless still water depth. Then, the traditional forms of depth-
integrated Boussinesq equations over a varying water depth can be
written in the following dimensionless form (CH95)
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Here, two non-dimensional parameters, � and μ, are introduced and
defined as

� =
a0
h0

; μ =
h0
l0

; ð4Þ

which measure the nonlinearity and frequency dispersion, respec-
tively. For the non-dispersive wave system (μ=0) the phase speed is
independent of wave number (or wave frequency). In a constant
depth, the wave form of a non-dispersive plane wave remains the
same, provided that the nonlinearity is very small. However, if the
nonlinearity becomes significant, the phase speed increases as the free
surface elevation increases, causing the steepening of the wave front.
In contrast, when the frequency dispersion effects are significant, each
wave component (with different wave frequency) propagates with
different phase speed, resulting in the degeneration (spreading or
dispersion) of wave form. In the traditional Boussinesq equations,
�=O(μ2) is assumed.

Substituting Eq. (1) into the terms, associatedwith μ2, on the right-
hand side of Eqs. (2) and (3) so as to eliminate P and Q from the terms,
we obtain the following new forms of momentum equations:
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