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ABSTRACT

We formulate the capacity expansion planning as a bilevel optimization to model the hierarchical decision
structure involving industrial producers and consumers. The formulation is a mixed-integer bilevel linear
program in which the upper level maximizes the profit of a producer and the lower level minimizes
the cost paid by markets. The upper-level problem includes mixed-integer variables that establish the
expansion plan; the lower level problem is an LP that decides demands assignments. We reformulate
the bilevel optimization as a single-level problem using two different approaches: KKT reformulation
and duality-based reformulation. We analyze the performance of these reformulations and compare
their results with the expansion plans obtained from the traditional single-level formulation. For the
solution of large-scale problems, we propose improvements on the duality-based reformulation that
allows reducing the number of variables and constraints. The formulations and the solution methods are
illustrated with examples from the air separation industry.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Capacity expansion is one of the most important strategic deci-
sions for industrial gas companies. In this industry, most of the
markets are served by local producers because of the competi-
tive advantage given by the location of production facilities. The
dynamics of the industrial gas markets imply that companies must
anticipate demand increases in order to plan their capacity expan-
sion, maintain supply availability, and avoid regional incursion of
new producers. The selection of the right investment and distribu-
tion plan plays a critical role for companies in this environment. A
rigorous approach based on mathematical modeling and optimiza-
tion offers the possibility to find the investment and distribution
plan that yields the greatest economic benefit.

A rather large body of literature has been published on capacity
planning problems in several industries (Luss, 1982). Since the late
1950s, capacity expansion planning has been studied to develop
models and solution approaches for diverse applications in the
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process industries (Sahinidis and Grossmann, 1992), communica-
tion networks (Chang and Gavish, 1993), electric power services
(Murphy et al., 1982), and water resource systems (Nainis and
Haimes, 1975). Sahinidis et al. (1989) proposed a comprehensive
MILP model for long range planning of process networks. Van den
Heever and Grossmann (1999) used disjunctive programming to
extend this methodology to multi-period design and planning of
nonlinear chemical processes. An MILP formulation that integrates
scheduling with capacity planning for product development was
presented by Maravelias and Grossmann (2001). Sundaramoorthy
etal.(2012) proposed a two-stage stochastic programming formu-
lation for the integration of capacity and operations planning. In
summary, capacity planning is considered a central problem for
enterprise-wide optimization, a topic for which comprehensive
reviews are available (Grossmann, 2005, 2012).

Despite the importance of capacity expansion in industry,
the study of the problem in a competitive environment has not
received much attention. Soyster and Murphy (1989) formulated
a capacity planning problem for a perfectly competitive market.
However, perfect competition is a strong assumption. A more real-
istic hypothesis is to assume an oligopolistic market as presented
by Murphy and Smeers (2005). Game theory models have also been
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used (Zamarripa et al., 2012) for supply chain planning in cooper-
ative and competitive environments.

The competition between two players whose decisions are
made sequentially can be modeled as a Stackelberg game (von
Stackelberg, 2011). A Stackelberg competition is an extensive game
with perfect information in which the leader chooses his actions
before the follower has the opportunity to play. It is known that the
most interesting equilibria of such games correspond to the solu-
tion of a bilevel optimization problem (Osborne and Rubenstein,
1994)

Bilevel optimization problems are mathematical programs with
optimization problems in the constraints (Bracken and McGill,
1973). They are suitable to model problems in which two inde-
pendent decision makers try to optimize their own objective
functions (Candler and Townsley, 1982; Bard and Moore, 1992). We
present a mixed-integer linear bilevel formulation for the capacity
planning of an industrial gas company operating in a competi-
tive environment. The purpose of the upper-level problem is to
determine the investment and distribution plan that maximizes
the Net Present Value (NPV). The response of markets that can
choose among different producers is modeled in the lower-level
as a Linear Programming (LP) problem. The lower-level objec-
tive function is selected to represent the rational behavior of the
markets.

Solution approaches for bilevel optimization problems with
lower-level LPs leverage the fact that optimal solutions occur at
vertices of the region described by upper and lower level con-
straints. They rely on vertex enumeration, directional derivatives,
penalty terms, or optimality conditions (Saharidis et al., 2013). The
most direct approach is to reformulate the bilevel optimization as a
single-level problem using the optimality conditions of the lower-
level LP. The classic reformulation using Karush-Kuhn-Tucker
(KKT) conditions maintains linearity of the problem except for
the introduction of complementarity constraints (Fortuny-Amat
and McCarl, 1981; Bard and Falk, 1982; Bialas and Karwan, 1982).
An equivalent reformulation replaces the lower level problem
by its primal and dual constraints, and guarantees optimality
by enforcing strong duality (Motto et al.,, 2005; Garces et al.,,
2009).

Strategic investment planning for electric power networks has
been the most prolific application of bilevel optimization models.
Motto et al. (2005) implemented the duality-based reformulation
for the analysis of electric grid security under disruptive threats.
This bilevel problem was originally formulated by Salmeron et al.
(2004) with the purpose of identifying the interdictions that maxi-
mize network disruptions. A bilevel formulation for the expansion
of transmission networks was developed by Garces et al. (2009)
to maximize the average social welfare over a set of lower-level
problems representing different market clearing scenarios; they
also implemented the duality-based reformulation. Ruiz et al.
(2012) modeled electricity markets as an Equilibrium Problem
with Equilibrium Constraints (EPEC) in which competing producers
maximize their profitin the upper level and a market operator max-
imizes social welfare in the lower level; they use the duality-based
reformulation to guarantee optimality of the lower level problem
and obtain an equilibrium solution by jointly formulating the KKT
conditions of all producers. A similar strategy that includes the
combination of duality-based and KKT reformulations was used by
Huppmann and Egerer (2014) to solve a three-level optimization
problem that models the roles of independent system operators,
regional planners, and supra-national coordination in the European
energy system.

Another interesting application of bilevel optimization is the
facility location problem in a duopolistic environment. The model
presented by Fischer (2002) selects facilities among a set of
candidate locations and considers selling prices as optimization

variables, which leads to a nonlinear bilevel formulation. The prob-
lem is simplified to a linear discrete bilevel formulation under the
assumption that Nash equilibrium is reached for the prices. The
solution to the discrete bilevel optimization problem is obtained
using a heuristic algorithm.

Bilevel optimization models have also found application in
chemical engineering. Clark and Westerberg (1990) presented a
nonlinear bilevel programming approach for the design of chemical
processes and proposed algorithms to solve it. In their formula-
tion, the upper level optimizes the process design and the lower
level models thermodynamic equilibrium by minimizing Gibbs
free energy. Burgard and Maranas (2003) used bilevel optimiza-
tion to test the consistency of experimental data obtained from
metabolic networks with hypothesized objective functions. In the
upper level, the problem minimizes the square deviation of the
fluxes predicted by the metabolic model with respect to exper-
imental data, whereas the lower level quantifies the individual
importance of the fluxes. A bilevel programming model for sup-
ply chain optimization under uncertainty was developed by Ryu
et al. (2004); the conflicting interests of production and distri-
bution operations in a supply chain are modeled using separate
objective functions. They reformulate the bilevel problem in single-
level after finding the solution of the lower-level problem as
parametric functions of the upper-level variables and the uncer-
tain parameters. Chu and You (2014) presented an integrated
scheduling and dynamic optimization problem for batch processes.
The scheduling problem, formulated in the upper level, is subject
to the processing times and costs determined by the nonlinear
dynamic lower-level problem. The bilevel formulation is trans-
formed to a single level problem by replacing the lower-level with
piece-wise linear response functions. They assert that the bilevel
formulation can be used as a distributed optimization approach
whose solutions can easily adapt to variation in the problem’s
parameters.

It should also be noted that bilevel programming for nonlinear
models has been the subject of research in chemical engineering.
Faisca et al. (2007) presented a multi-parametric programming
approach that replaces the lower-level problem by its rational
reaction set parametrized on the upper-level variables. For global
optimization of continuous and mixed-integer bilevel problems,
Kleniati and Adjiman (2015) developed the Branch-and-Sandwich
algorithm, which solves bilevel programs with noncovex lower-
level problems.

The novelty of our research resides on the application of bilevel
optimization for capacity expansion planning in a competitive envi-
ronment. Bilevel programming for these kind of problems can be
seen as a risk mitigation strategy given the significant influence
of external decision makers in the economic success of invest-
ment plans. In particular, we propose a mathematical model that
includes a rational market behavior beyond the classic game theo-
retical models. The investment plans obtained from this approach
are found to be less sensitive to changes in the business envi-
ronment in comparison to the plans obtained from single-level
models.

In order to solve the challenging bilevel formulation, we test
the KKT and the duality-based reformulations with an illustra-
tive example, a middle-size example, and an industrial example.
The results show the advantages of the duality-based reformu-
lation in terms of computational effort. Despite the efficiency
obtained with this reformulation, we found necessary to imple-
ment two additional improvement strategies to solve large-scale
instances.

The remaining of this article is organized as follows. In Section
2, we describe the problem. In Section 3, we present the single-
level capacity planning formulation. Section 4 presents the bilevel
capacity planning problem with rational markets. In Section 5, we
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