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Headland-bay beaches are a typical feature of many of the world's coastlines. Their curved planform has
aroused much interest since the early days of Coastal Engineering. Modelling this characteristic planform is a
task of great interest, not least in relation to projects of coastal structures whose effects on the shoreline
must be studied from the planning stages. In this work, Artificial Intelligence is applied to this task—in
particular, artificial neural networks (ANNs). Unlike conventional planform models, they are not based on a
given mathematical expression of the shoreline curve. Instead, they learn from experience (from a number of
training cases) how the planform of a headland-bay beach is shaped, with due regard to the obliquity of
incident waves. Three artificial neural networks, with different input/output structures, are implemented
and subsequently trained with a number of bays. Once trained, they are tested for validation on other
headland-bay beaches. Finally, the most performing neural network is compared with a state-of-the-art
planform model.

© 2009 Published by Elsevier B.V.

1. Introduction

The curved planform of the beaches in the lee of natural head-
lands or breakwaters (e.g., Fig. 1), caused by wave diffraction and
subsequent refraction, has aroused much interest since the early days
of Coastal Engineering (Krumbein, 1947; Jennings, 1955; Davies,
1958; Silvester, 1960). Referred to as half-heart shaped bays
(Silvester, 1960), crenulate-shaped bays (Ho, 1971; Silvester and
Ho, 1972), spiral beaches (Le Blond, 1972), headland-bay beaches
(Le Blond, 1979; Wong, 1981), static equilibrium bays (Hsu et al.,
1989a,b), or bayed beaches (Tan and Chiew, 1994), the interest of
their characteristic planform is not limited to the interpretation of
existing coastal features. In effect, inducing the formation of new bays
by means of artificial headlands can be used to control coastal erosion
(Hsu et al., 1989c, 2008). With this in view, it is necessary to predict
the planform which the shoreline will adopt on reaching equilibrium,
be it dynamic or static (with or without sediment supply, respective-
ly). Modelling the planform of headland-bay beaches is also important
when a new coastal structure, e.g. a breakwater, is to be constructed
on a sandy coast (Fig. 1). A curved shoreline will ensue, whose
equilibrium shape must be determined beforehand as part of the
environmental impact assessment of the project. Alternative layouts

may thus be compared on the grounds of their impact on adjacent
beaches.

Such tasks are usually carried out by means of empirical planform
models. Among the first, Yasso's logarithmic spiral (1965) was a
landmark work. Vichetpan (1969) and Silvester (1970a,b), among
others, conducted further work on the logarithmic spiral model. Its
practical application, however, is not without difficulty. Moreover,
after some additional research it became clear (Hsu et al., 1987) that
the logarithmic spiral did not provide a good fit to the complete
shoreline curve of a headland-bay beach. To overcome this problem,
Hsu and Evans (1989) put forward a new model in which the
shoreline curve is expressed as a second-order polar coordinates. This
parabolic model has found the widest application in Coastal Engineer-
ing practice. Tan and Chiew (1994) reduced the number of
parameters in Hsu and Evans' (1989) model from three to one by
imposing that the shoreline be tangent at the downcoast control point
to the incoming wave fronts. González andMedina (2001) proposed a
methodology to locate this control point, from which the parabolic
model curve is applicable. Iglesias and Negro (2001) studied the
influence on the bay planform of sediment supplies from small rivers
or streams (dynamic equilibrium). Iglesias et al. (2002) put forward a
planform model for the case of multiple diffractions.

In this work, an Artificial Intelligence tool, artificial neural networks
(Lippmann, 1987; Haykin, 1999), is proposed to model the planform of
headland-bay beaches. Although the objective is the same of conven-
tional models, the approach is very different—to begin with, artificial
neural networks (ANNs) are not based on a given mathematical
relationship of the beach planform. Instead, they are capable of learning
from experience, i.e. from a number of training cases. Indeed, the training
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of an artificial neural network has many common points with human
cognition. When people see a cat, they recognize the animal not by
thinking in terms of an explicit definition (“a small domesticated
carnivorous mammal with soft fur, a short snout, and retractile claws”,
according to the Compact Oxford English Dictionary), but simply
because they have seen cats before. Much in the same way, an artificial
neural network need not resort to a mathematical relationship in order
to know the shape of a headland-bay beach, once it has “seen”many of
them in the training process. “Seeing” means acquiring not only the
coordinates of a number of shoreline points, but also the basic data
concerning theembayment, namely the directionofwave incidence, the
position of the point of diffraction and that of the downcoast control
point (defined hereafter). These are the same basic data invoked by
conventional planform models.

Three artificial neural networks are implemented to model the
planform of headland-bay beaches. All three belong to the same class
of neural networks—backpropagation networks, which are best suited
to this kind of problem in the light of their generalization capabilities.
Although the three of them share the same number of neural layers
and neurons, they differ in the way in which data are inputted and
outputted.

The artificial neural networks are trained by presenting them with
a number of headland-bay beaches (the training data set). Once
trained, they are tested on other cases of headland-bay beaches (the
testing data set) by providing them with the basic beach data and
contrasting the shoreline they yield with the real one, obtained from
aerial orthophotos. Finally, the best of the three neural networks is
compared with a state-of-the-art planform model.

2. Data set

In order to train the artificial neural networks, it is important to
work with as many cases of headland-bay beaches as possible. A small
data set would result in a poorly trained network, and subsequently in
bad test results. This is not to say, however, that any headland-bay
beach should be used. In this respect, it is essential that the beaches
selected to form the training and testing data sets be as homogeneous
as possible from the standpoint of the physical processes affecting the
shoreline planform, at least inasmuch as the eventual heterogeneities
are not accounted for by the model variables. It would be unwise, for

instance, to consider headland-bay beaches in dynamic equilibrium
alongside others in static equilibrium, given that no variable regarding
sediment transport is included in the present formulation.

Hsu et al. (1989a) and Hsu and Evans (1989) found that the
planform of a bay in static equilibrium depends only on wave
obliquity. Only such static equilibrium bays will be used in this study.
Moreover, if the obstacle causing thewaves to diffract and thereby the
shoreline to curve is not a natural headland but a breakwater, it is of
paramount importance that sufficient time has elapsed since its
construction for the planform to have attained equilibrium. The
shoreline of the selected beaches should also be free of rock outcrops,
which would be a source of noise for the neural network. It is also
desirable that tidal currents be negligible or nil in the bay, for the sake
of homogeneity. For similar reasons, there should be a single point of
diffraction—cases where multiple diffractions occur, for instance at a
natural headland and subsequently at a breakwater, are excluded.

After analysing many headland-bay beaches on the Mediterranean
coast of Spain, seventeen beaches were selected on these grounds
(Table 1). The condition of negligible tidal currents is automatically
fulfilled on this tideless coast. Great care was exercised in ensuring
that the other conditions were similarly met, with special emphasis

Fig. 1. Headland-bay beach at Espasante (NW Spain).

Table 1
List of headland-bay beaches used in the study.

Beach name Province Data set θ0 ρ0 (m)

Arenys De Mar Barcelona Train 44.9° 799.0
Vilanova y La Geltrú Barcelona Test 54.9° 262.6
Calafell Barcelona Train 36.6° 375.5
Castellón Castellon Test 48.4° 162.1
Chilches Castellon Train 48.0° 247.9
Las Villas Castellon Test 40.3° 314.5
La Oliva Valencia Test 54.9° 177.6
Playa Del Cura Alicante Train 60.7° 173.6
El Campello Alicante Train 54.5° 484.9
Sta. Pola Alicante Test 44.0° 257.5
Tómbolo Sta. Pola 1 Alicante Train 41.6° 76.0
Tómbolo Sta. Pola 2 Alicante Test 48.8° 86.3
Tómbolo Sta. Pola 3 Alicante Train 53.7° 69.7
La Mena Almeria Train 54.4° 93.6
Torreguardiaro Cadiz Train 60.1° 532.8
Peguera Mallorca (Bal. I.) Test 56.7° 220.1
Palma Mallorca (Bal. I.) Train 60.4° 312.8
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