Contents lists available at ScienceDirect

Computers and Chemical Engineering

ELSEVIER

journal homepage: www.elsevier.com/locate/compchemeng

An adjustable robust optimization approach to scheduling of continuous industrial processes providing interruptible load

Qi Zhang^a, Michael F. Morari^b, Ignacio E. Grossmann^{a,*}, Arul Sundaramoorthy^c, Jose M. Pinto^d

^a Center for Advanced Process Decision-making, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

^b Department of Chemical and Bioengineering, Swiss Federal Institute of Technology Zurich (ETHZ), 8092 Zurich, Switzerland

^c Praxair, Inc., Business and Supply Chain Optimization R&D, Tonawanda, NY 14150, USA

^d Praxair, Inc., Business and Supply Chain Optimization R&D, Danbury, CT 06810, USA

ARTICLE INFO

Article history: Received 28 September 2015 Received in revised form 28 November 2015 Accepted 22 December 2015 Available online 31 December 2015

Keywords: Production scheduling Demand response Interruptible load Adjustable robust optimization Mixed-integer linear programming

ABSTRACT

To ensure the stability of the power grid, backup capacities are called upon when electricity supply does not meet demand due to unexpected changes in the grid. As part of the demand response efforts in recent years, large electricity consumers are encouraged by financial incentives to provide such operating reserve in the form of load reduction capacities (interruptible load). However, a major challenge lies in the uncertainty that one does not know in advance when load reduction will be requested. In this work, we develop a scheduling model for continuous industrial processes providing interruptible load. An adjustable robust optimization approach, which incorporates recourse decisions using linear decision rules, is applied to model the uncertainty. The proposed model is applied to an illustrative example as well as a real-world air separation case. The results show the benefits from selling interruptible load and the value of considering recourse in the decision-making.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With rising electricity demand, deregulated electricity markets, and increasing penetration of intermittent renewable energy into the power supply mix, the level of uncertainty in the power grid has increased tremendously. As a result, the stable and reliable operation of the power grid has become increasingly challenging. In recent years, the notion of a *smart grid* has been evolving, which represents the idea of effectively coordinating the major grid operations—electricity generation, transmission, distribution, and consumption—through improved communication, holistic optimization, and market design.

One main element of the smart grid concept is the utilization of the flexibility for load adjustment on the electricity consumers' side, which is also referred to as demand response (DR). In DR, one distinguishes between dispatchable and nondispatchable DR (FERC, 2010). Dispatchable DR refers to load adjustment capacities that consumers provide to the grid operator such that these

http://dx.doi.org/10.1016/j.compchemeng.2015.12.018 0098-1354/© 2015 Elsevier Ltd. All rights reserved. capacities can be dispatched to maintain grid stability or in times of emergency. The grid operator has control over dispatchable DR resources by either direct load control or by sending load adjustment requests to the consumers. In nondispatchable DR, consumers are not obliged to meet any load change requests by the grid operator, but rather choose to adjust their power consumption profiles based on price signals from the electricity market.

Only recently, researchers and practitioners have acknowledged the high potential benefits of demand side management (DSM), which involves energy efficiency and DR measures, for the chemical processing industry (Paulus and Borggrefe, 2011; Samad and Kiliccote, 2012; Merkert et al., 2014). In particular, the scheduling of power-intensive industrial processes has evolved into a major research field. In this context, processes such as steelmaking (Ashok, 2006; Castro et al., 2013), electrolysis (Babu and Ashok, 2008), cement production (Castro et al., 2011), and air separation (lerapetritou et al., 2002; Karwan and Keblis, 2007; Mitra et al., 2012; Zhang et al., 2016) have been considered. In their recent review, Zhang and Grossmann (2015) present a comprehensive overview of the advances made in planning and scheduling for industrial DSM, and highlight future challenges in this area. One of the conclusions of the review is that most existing works only

^{*} Corresponding author. Tel.: +1 4122683642. E-mail address: grossmann@cmu.edu (I.E. Grossmann).

Nomenclatu

Nomenciature		
Indices		
f	supporting hyperplanes	
j i	products	
i	vertices	
J m m/ m	" operating modes	
···· ··· ···	operating modes	
r	operating subregions	
t	time periods	
_		
Sets		
F _{mr}	supporting hyperplanes associated with subregion	
	<i>r</i> of mode <i>m</i>	
Ι	products	
Jmr	vertices of polytope describing subregion <i>r</i> of mode	
	m	
Μ	operating modes	
\overline{M}	flexible operating modes, $\overline{M} \subseteq M$	
Â	inflexible operating modes $\widehat{M} \subset M$	
R	subregions of mode <i>m</i>	
SO	predefined sequences of mode transitions	
T	time periods $T = \int A^{\text{max}} + 1 A^{\text{max}} + 2 = 0.1$	
1	$time periods, 1 = \{-0, 1, -0, 1, 2,, 0, 1,, tfin\}$	
\overline{T}	time periods in the scheduling horizon	
1	\overline{T} (1.2 fin)	
тр	$I = \{1, 2, \dots, l\}$	
	possible mode transitions	
$\frac{1R_m}{m}$	modes from which mode <i>m</i> can be directly reached	
TR_m	modes which can be directly reached from mode <i>m</i>	
D / ·	·	
Determi		
a _{mrfi}	coefficient related to product i used in the equation	
	representing the supporting hyperplane f of subre-	
	gion <i>r</i> of mode <i>m</i>	
b _{mrf}	coefficient used in the equation representing the	
	supporting hyperplane <i>f</i> of subregion <i>r</i> of mode <i>m</i>	
	[kg]	
D _{it}	demand for product <i>i</i> in time period <i>t</i> [kg]	
IL_t^{\min}	minimum amount to provide if interruptible load is	
ı	provided in time period t [kWh]	
IL_{t}^{max}	maximum amount to provide if interruptible load is	
1	provided in time period <i>t</i> [kWh]	
<i>W</i> ⁱⁿⁱ	initial inventory of product $i [kg]$	
πmin	minimum inventory of product i at time point t [kg]	
IV _{it}	minimum inventory of product <i>i</i> at time point <i>t</i> [kg]	
IV it	maximum inventory of product <i>i</i> at time point <i>i</i> [kg]	
PD_{mri}^{max}	maximum amount of product i that can be produced	
	in subregion r of mode m [kg]	
v _{mrji}	amount of product <i>i</i> produced in one time period at	
	vertex <i>j</i> of subregion <i>r</i> of mode <i>m</i> [kg]	
y_m^{ini}	1 if plant was operating in mode <i>m</i> in the time period	
	before the start of the scheduling horizon	
$Z_{mm't}^{ini}$	1 if operation switched from mode <i>m</i> to mode <i>m'</i> at	
iiiii t	time <i>t</i> before the start of the scheduling horizon	
α_t^{EC}	unit electricity price in time period t [\$/kWh]	
α^{IL}	unit price for provided interruptible load in time	
[period <i>t</i> [\$/kWh]	
0 ^{PC}	unit cost for nurchasing product <i>i</i> in time period <i>t</i>	
^a it	[\$/kg]	
~ RP	$[\psi/\kappa g]$	
α_{mri}^{mri}	unit cost for recourse associated with the p-	
RO	variables [\$/Kg]	
$\alpha_i^{n_2}$	unit cost for recourse associated with the q-	
	variables [\$/kg]	
δ_{mr}	fixed electricity consumption if plant operates in	
	subregion <i>r</i> of mode <i>m</i> [kWh]	
ΔEC_{mr}^{max}	the maximum load change that can be achieved in	
	subregion <i>r</i> of mode <i>m</i> [kWh]	

Δt	length of one time period [h]
Ymri	unit electricity consumption corresponding to prod-
	uct i if plant operates in subregion r of mode m
	[kWh/kg]
Γ_t	budget parameter for time period <i>t</i>
ζt	number of preceding time periods of which
	the uncertain parameters are considered in the
	decision rule for recourse in time period t , $\zeta_t \in$
_	[0, t-1]
ζ	$\max_{n} \zeta_t, \zeta \in [0, t^{nn}]$
θ	$t \in T$ minimum stav time in mode m' after switching from
<i>∽mm</i> ′	mode <i>m</i> to $m' [\Lambda t]$
$\overline{\theta}_{mm'm''}$	fixed stay time in mode m' of the predefined
< mm m [*]	sequence (m, m', m'') [Λt]
θ^{\max}	maximum minimum or predefined stav time in a
-	mode [Δt]
Ω	big-M parameter [kWh]
Uncertair	n parameters
LRt	amount of load reduction requested in time period
	t
w _t	normalized load reduction request in time period <i>t</i>
Continuo	us variables
EC_t	amount of electricity consumed in time period t
	[kWh]
ILt	amount of interruptible load provided in time
	period <i>t</i> [kWh]
IV _{it}	inventory of product <i>i</i> at time <i>t</i> [kg]
p_{mritk}	coefficient for recourse decision rule related to
	the change in the amount of product <i>i</i> produced
	in subregion r of mode m in time period t in
	response to uncertainty realized in time period k
	[kg]
PC_{it}	amount of product <i>i</i> purchased in time period <i>t</i> [kg]
PC_{it}	target amount of product <i>i</i> purchased in time period
~	<i>t</i> [kg]
PC_{it}	response change in amount of product <i>i</i> purchased
	in time period <i>t</i> [kg]
PD _{it}	amount of product <i>i</i> produced in time period <i>t</i> [kg]
q_{itk}	coefficient for recourse decision rule related to the
	change in the amount of product <i>i</i> purchased in time
	period <i>t</i> in response to uncertainty realized in time
_	period k [kg]
PD _{mrit}	amount of product i produced in subregion r of mode
	<i>m</i> in time period <i>t</i> [kg]
PD _{mrit}	target amount of product i produced in subregion r
~	of mode <i>m</i> in time period <i>t</i> [kg]
PD _{mrit}	response change in amount of product <i>i</i> produced in
	subregion <i>r</i> of mode <i>m</i> in time period <i>t</i> [kg]
SL _{it}	amount of product <i>i</i> sold in time period <i>t</i> [kg]
TC	total net operating cost [\$]
λ _{mrjt}	coefficient for vertex <i>j</i> in subregion <i>r</i> of mode <i>m</i> in
	time period <i>t</i>
N 11	
Binary va	Iriables
x_t	I if interruptible load is provided in time period t
Ymt	I II plant operates in mode <i>m</i> in time period <i>t</i> (can
	also de defined as a continuous variable)
y _{mrt}	i in prant operates in subregion r of mode m in time

 $z_{mm't}$ 1 if plant operation switched from mode *m* to mode *m'* at time *t*

Download English Version:

https://daneshyari.com/en/article/172123

Download Persian Version:

https://daneshyari.com/article/172123

Daneshyari.com