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A higher-order non-hydrostatic σ model is developed to simulate non-linear refraction–diffraction of water
waves. To capture non-linear (or steep) waves, a 4th-order spatial discretization is utilized to approximate
the large horizontal pressure gradient. A higher-order top-layer pressure treatment is further implemented
to resolve wave propagation. The model's characteristics including linear wave dispersion and non-linearity
are carefully examined. The accuracy of the present model using only two vertical layers is validated by
laboratory data and the available results predicted by the non-linear Schrödinger equation, Boussinesq-type
equations, the non-linear mild slope equation, and the Laplace equation. Features of harmonic generation as
well as the influences of dispersion and non-linearity on wave energy transfer processes are discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Accurate modeling of surface wave propagation from deep water
to shallow water is an important topic in coastal and ocean
engineering (Mei and Liu, 1993; Janssen et al., 2006). As waves travel
over irregular topographies, the wave form is modified owing to the
effects of dispersion, shoaling, refraction, diffraction, and reflection.
Particularly in the shallow-water regions, non-linear effects related to
wave–bottom and wave–wave interactions can further complicate
energy transfers and harmonic generation (Beji and Battjes, 1993;
Kirby, 1997). Over the last several decades, a lot of attempts have been
made to develop unified models capable of resolving combined
refraction–diffraction of water waves with wide-ranging dispersion
and non-linearity (Wu, 2001).

Three types of models, in general, are utilized to study water
waves. First, the most widely-used are the so-called depth-integrated
models, e.g. the standard Boussineq equation (Peregrine, 1967) for
weakly non-linear shallow-water waves (Liu et al., 1985) or the
classical mild-slope equation (Berkhoff, 1972) for linear waves (Kirby
and Dalrymple, 1983). Further efforts have been made to extend the
applicability of depth-integratedmodels, i.e. themodified Boussinesq-
type models for deeper water (Madsen and Sørensen, 1992; Nwogu,
1993; Chen and Liu, 1995; Wei et al., 1995; Gobbi et al., 2000; Madsen
et al., 2002; Lynett and Liu, 2004; Hsiao et al., 2005) or the non-linear
mild slope models including the parabolic approximation (Kirby and

Dalrymple, 1983; Liu and Tsay, 1984; Kaihatu and Kirby, 1995; Tang
and Ouellet, 1997). One can refer to an excellent review by Liu and
Losada (2002) for the development of depth-integrated models.

Second, the Laplace equation provides a framework to describe
surface waves without limitations of water depth (Longuet-Higgins
and Cokelet, 1976; Dommermuth and Yue, 1987; Dold, 1992; Guyenne
and Grilli, 2006). For applications of this approach to steep water
waves or non-linear refraction–diffraction problems, one can refer to
thorough reviews by Tsai and Yue (1996). While the accuracy of this
approach has been addressed, efficiently simulating 3D waves is still
of concern (Li and Fleming, 1997; Fructus et al., 2005; Fochessato and
Dias, 2006). In addition, the Laplace equation is based upon the
potential flow theory, hindering the simulations of wave propagation
with rotation and energy dissipation.

Third, the so-called non-hydrostatic model based upon the full
Navier–Stokes equations is the most detailed approach for predicting
non-linear dispersivewaves. Normally this type ofmodels (Mayer et al.,
1998; Casulli, 1999; Li and Fleming, 2001; Namin et al., 2001; Lin and Li,
2002; Kocyigit et al., 2002; Chen, 2003) employs the hydrostatic
pressure assumption at the top-layer. As a result, a relatively large
number (10–40) of vertical layers are needed to resolve dispersivewave.
In recent years, the feasibilityof efficient non-hydrostaticmodels using a
relatively small number of vertical layers have been proposed and
demonstrated. By specifying the non-hydrostatic pressure at the free
surface using the Kellor-box scheme (Stelling and Zijlema, 2003) or the
integral method (Yuan and Wu, 2004a,b), these models with few
vertical layers are capable of resolving wave dispersion to a certain
degree. For instance, the two-layermodel by Zijlema and Stelling (2008)
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can reasonably resolve wave transformation over irregular topography
but unfaithfully reveal the higher harmonics at Kh ∼1.2 (see their
Fig. 11), where K and h are thewave number andwater depth. Yuan and
Wu (2006) show that given a tolerance error of 1%, two-layer and five-
layer models can capture wave dispersion of a dimensionless relative
water depth Kh=1.0 and Kh=5.0, respectively. In other words the
vertical layer number determines the accuracy of non-hydrostatic
models in resolving wave dispersion. Interestingly it is found that the
number of vertical layers does not strongly interplay with non-linearity
once dispersion is resolved. There is an ongoing research on the
development and application of efficient non-hydrostatic models in
predicting nearshore wave transformation (Cea et al., in press; Young
and Wu, 2009).

The objective of this paper is to develop an efficient higher-order,
three-dimensional (3D) non-hydrostatic σ model for accurately re-
solving combined refraction–diffraction of water waves with wide-
ranging dispersion and non-linearity. While the boundary-fitted σ co-
ordinate system provides the advantage to well describe the free
surface and bathymetry, relatively large numerical errors can result
from the inappropriate treatment of the horizontal pressure gradient
over steep surfaces (Haney, 1991). Following the approach in Young
et al. (2007), a 4th-order approximation for the horizontal pressure
gradient is utilized to resolve non-linear (or steep) waves. To better
predict wave dispersion, a higher-order top-layer pressure treatment
is further implemented. Model characteristics including dispersion
and non-linearity are carefully examined. The higher-order 3D model
is then applied to all the experimental cases in Whalin (1971). To
the best of the authors' knowledge, application of non-hydrostatic
models against these experiments has not yet been reported in the
literature. We will compare the accuracy of the present model using

only twovertical layerswith the experimental data and results of several
available models including the non-linear Schrödinger equation (Liu
and Tsay, 1984), the Boussinesq-type equation (Liu et al., 1985; Rygg,
1988; Madsen and Sørensen, 1992), the non-linear mild slope equation
(Kaihatu and Kirby, 1995; Tang and Ouellet, 1997), and the Laplace
equation (Li and Fleming,1997). Finally features of harmonic generation
in each case as well as the influences of dispersion and non-linearity on
wave energy transfer processes are discussed.

2. Non-hydrostatic model

2.1. Governing equations and boundary conditions

The governing equations for free-surface waves are the unsteady,
incompressible, Navier–Stokes equations. To describe both the free-
surface elevation and bottom topography, e.g. non-linear waves over
irregular geometry, the time dependent Cartesian domain (x⁎,y⁎,z⁎,t⁎)
is mapped into a stationary rectangular σ domain (x,y,σ,t) (Yuan and
Wu, 2004a, Young et al., 2007), i.e.,

t = tT; x = xT; y = yT;σ =
zT − η xT; yT; tT

� �
h xT; yT
� �

+ η xT; yT; tT
� � ; ð1Þ

yielding σ=0 at the free surface z⁎=η(x⁎,y⁎,t⁎) and σ=−1 at the
bottom z⁎=−h(x⁎,y⁎), as seen in Fig. 1. The transformed governing
equations in primitive variables are
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Fig. 1. (a) σ transformation and (b) staggered grid system between the Cartesian co-ordinate and the σ co-ordinate.
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