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a  b  s  t  r  a  c  t

The  uncertainty  set-induced  robust  optimization  framework  has  received  considerable  attention  in the
past decades.  It has  been  extensively  studied  in literature  and  applied  to  address  various  decision-making
problems.  However,  existing  robust  optimization  methods  generally  assume  that  the uncertain  parame-
ters  are  independent.  As a result,  the  traditional  robust  optimization  methods  may  lead  to  a  conservative
solution  in  practice  when  correlations  between  uncertain  parameters  exist.  In this  work,  we  present  novel
results on  robust  optimization  under  correlated  uncertainties  that appear  in  a single  constraint.  Robust
counterpart  optimization  formulations  are  derived  based  on  various  types  of  uncertain  sets.  Numerical
and  application  examples  are  studied  to compare  the  performance  of robust  optimization  by  incorporat-
ing  various  levels  of  correlation.  The  results  demonstrate  that  incorporating  more  accurate  correlation
into  the  robust  optimization  formulation  can lead  to less  conservative  robust  solution.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In deterministic optimization problems, the model parameters
are assumed to be known with certain values. However, in real
applications many realistic parameters are subject to uncertainty.
Under such situations, assuming deterministic values for uncertain
parameters will lead to infeasible or suboptimal decisions for prac-
tical implementation. Thus, incorporation of parameter uncertainty
is necessary in many practical optimization problems. Various
approaches have been proposed in the past to address uncertainty
in optimization problems, such as robust optimization, stochas-
tic programming with recourse, and chance constraints. Among
the various methods, robust optimization addresses the param-
eter uncertainty based on an uncertainty set, which covers part
or the whole region of the uncertainty space. The target of robust
optimization is to select the best solution that remains feasible for
any realizations of the uncertain parameters in the uncertainty set.
Compared to other methods for addressing uncertainty in opti-
mization problems, one of the significant advantages of robust
optimization is the computational tractability. The robust coun-
terpart generally does not increase much in model size compared
to the deterministic model, and the convexity of the constraint can
also be preserved.

∗ Corresponding author. Tel.: +1 780 492 1107; fax: +1 780 492 2881.
E-mail address: zukui@ualberta.ca (Z. Li).

The uncertainty set-induced robust optimization framework
has been investigated by many studies in past decades and it
has been applied to various decision-making problems. One of
the earliest work by Soyster (1973) studying robust optimization
considered simple perturbations in the data and reformulated the
original linear programming problem so that the solution would be
feasible under all possible perturbations. However, the approach
is very conservative since it ensures feasibility for all potential
realizations of the uncertainty. Robust optimization received more
attention since the 1990s. El-Ghaoui and Lebret (1997) studied
least-squares problems with uncertainty. El-Ghaoui et al. (1998)
investigated uncertain semidefinite problems with robust opti-
mization framework. Ben-Tal and Nemirovski (1998, 1999) pointed
out that robust formulation becomes a conic quadratic problem
for a linear constraint with ellipsoidal uncertainty set. A number
of valuable formulations and applications in linear programming
and general convex programming have been proposed by Ben-Tal
and Nemirovski (2000, 2001). Ben-Tal et al. (2004) proposed an
approach for linear programming problems where some of the
decision variables must be determined before the realization of
uncertain data, while the other decision variables can be set after
realization. Bertsimas and Sim (2004) derived a robust formulation
for uncertain linear programming problems using budget parame-
ter, which can control the degree of conservatism of the solution.
Bertsimas et al. (2004) studied the robust counterpart of linear
programming problems based on the uncertainty set defined by
a general norm. By generalizing the symmetric uncertainty sets,
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Chen et al. (2007) investigated asymmetrical set induced robust
optimization.

Besides the above contributions made by the operations
research community, robust optimization also received studies by
the process systems engineering researchers. Li and Ierapetritou
(2008) studied the application of various robust optimization for-
mulations to process scheduling problem under uncertainty. Lin
et al. (2004) and Janak et al. (2007) studied robust optimization
for mixed integer linear optimization problems with uncertainty
under both bounded and several known probability distributions.
Verderame and Floudas (2009) applied the robust optimization
framework to operational planning problems. Li et al. (2011) pre-
sented a systematic study on the set-induced robust counterpart
optimization for both linear optimization and mixed integer lin-
ear optimization problems. Robust counterpart formulations were
derived based on different types of uncertainty set. While those
work focused on robust optimization formulations for an individual
constraint, Yuan et al. (2015) proposed robust optimization formu-
lations that can be used to approximate joint chance constraints in
a recent work.

The issue of robust solution quality also received attention in
several recent works. To improve the solution quality of a robust
optimization problem, the main issue is to find an appropriate
uncertainty set size. To be more specific, a small set size is pre-
ferred, while the solution reliability is met, because it leads to less
conservative solution. The traditional way of determining the set
size is based on the a priori probability bound, which is a function of
the set size. Li et al. (2012) proposed various a priori and a posteriori
probability bounds. Based on that, Li and Floudas (2014) proposed
an iterative method to improve the robust solution quality by iter-
atively adjusting the set size until the probability of constraint
satisfaction reaches the desired level. In another work, Li and Li
(2015) proposed a method to identify the smallest set size with the
least conservative solution through an optimal set size identifica-
tion algorithm.

Although considerable progress has been made in the area of
robust optimization, in the existing methods, independence is gen-
erally assumed among uncertainties in the parameters. However,
in practice, correlations may  arise in the uncertainties. For instance,
the price and demand of crude oil are correlated, which may  affect
the refinery planning decision making. As shown by the compu-
tational studies of this work, the traditional robust optimization
methods that ignore the correlation may  lead to a conservative
solution. Hence, it is of great importance to consider the correlation
among uncertainties in robust optimization.

In this work, novel results are presented for robust optimiza-
tion under correlated uncertainties. First, the robust optimization
framework is proposed for correlated uncertainty within a sin-
gle constraint. Based on five different types of uncertainty set, the
corresponding robust counterpart optimization formulations are
derived. Specifically, for unbounded and correlated uncertainties,
box, polyhedral, and ellipsoidal type of uncertainty sets are selected
to derive the set-induced robust optimization formulations, and
for bounded correlated uncertainties, “interval + polyhedral” and
“interval + ellipsoidal” types of uncertainty set are applied to
derive the set-induced robust optimization formulations. Finally,
numerical and application examples are studied to investigate the
proposed robust optimization framework for correlated uncer-
tainty within a constraint. Different levels of the correlations
are considered to demonstrate the necessity of incorporating
uncertainty correlations into the traditional robust optimization
approach.

The rest of this paper is organized as follows: In Section 2, the
robust counterpart formulations for uncertainty within a single
constraint are derived based on five different types of uncertainty
set. In Section 3, numerical examples are studied to demonstrate

the effectiveness of the proposed robust counterpart formulations,
and to investigate the effect of correlation modeling in robust opti-
mization. The proposed method is further applied to a production
planning example in Section 4. Finally, the paper is concluded in
Section 5.

2. Robust counterpart optimization formulations

Consider the following linear optimization problem with uncer-
tain constraint coefficients:

max
x ∈ X

cx

s.t. ãT x ≤ b
(1)

where x ∈ Rn represents the decision variables, ã is an n × 1 vector
with entries ãj , j = 1, . . .,  n, i.e., ã = [ã1, . . ., ãn]T , and n is the number
of decision variables. Without loss of generality, the uncertainties
in the coefficients can be modeled as:

ãj = aj + uj, j = 1, . . .,  n (2)

where aj is the nominal (most expected) value of ãj , and uj is the ran-
dom part following a distribution with zero mean. Separating the
deterministic part and the uncertain part, the constraint becomes:

aT x + uT x ≤ b (3)

where u = [u1, . . .,  un]T. To ensure the constraint satisfaction under
the worst-case scenario of an uncertainty set U, the constraint with
uncertainty is rewritten as:

aT x + max
u ∈ U

uT x ≤ b (4)

The above constraint (4) is the robust counterpart of the
uncertain constraint (3). Its explicit expression depends on the
uncertainty set U. Robust counterpart optimization problem of
(1) can be obtained by replacing the uncertain constraint with
its robust counterpart. In this work, five types of uncertainty
set including box, ellipsoid, polyhedral, interval + ellipsoidal, and
interval + polyhedral. The design of uncertainty set is related to
the distribution of the uncertainty. If the uncertainty is subject
to unbounded distribution, then the box, ellipsoidal, and poly-
hedral type of uncertainty set is appropriate to be used in the
robust optimization framework, where the size of the uncer-
tainty set is not restricted. Instead, if the uncertainty is subject
to bounded distribution, then the bounds information can be
involved in the uncertainty set as intervals to avoid an unneces-
sarily large uncertainty set (which will lead to more conservative
solution). Hence, the interval + ellipsoidal uncertainty set and the
interval + polyhedral uncertainty set are appropriate for bounded
uncertainty distribution. In the following subsections, explicit
robust counterpart constraint formulations of (4) will be investi-
gated based on different uncertainty sets.

2.1. Robust formulations for bounded uncertainty distribution

Property 1 (Box uncertainty set). The robust counterpart
optimization formulation for constraint (4) under the box-type
uncertainty set Ubox =

{
u
∣∣∥∥Mu

∥∥
∞ ≤ �

}
is:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
aT x + �

n∑
k=1

yk ≤ b

−yk ≤
n∑

j=1

mkjxj ≤ yk, ∀k = 1, . . .,  n

(5)
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