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a  b  s  t  r  a  c  t

An  adaptive  mesh  refinement  technique  developed  for the  solution  of  scalar  problems  is extended  to  the
simulation  of two-phase  flow  problems,  as  a means  of reducing  the  computational  runtime  associated
with  such  problems.  The  methodology,  involving  the adaptive  partition  of the  domain  into  uniformly
discretised  regions,  is extended  to systems  of  equations  without  increase  in algorithmic  complexity.
By  application  first  to the  simpler  case  of the Euler  equations  of  gas dynamics,  the  technique  is  shown
to  handle  shocks  without  loss  of accuracy  and  to result  in  significant  CPU  runtime  reductions  of over
90%.  Application  to more  complex  two-phase  flow  problems,  including  the  flashing  flow  during  the
decompression  of  a pipeline,  also show  dramatic  increase  in  computational  performance.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The prediction and simulation of problems involving compress-
ible two-phase flows with phase transition is necessary in a number
of industrial applications. Examples include study of cavitation
in automotive fuel systems (Martynov et al., 2006), flash boil-
ing of water during loss-of-coolant accidents in nuclear reactors
(Nigmatulin and Soplenkov, 1994) and liquid boiling and expan-
sion in refrigeration systems and heat pumps (Simões-Moreira and
Bullard, 2003). In the particular context of Carbon Capture and
Storage, the focus of such models has been on the flows result-
ing from pipeline decompression and failure (Brown et al., 2013b;
Mahgerefteh et al., 2012; Munkejord et al., 2010).

For the simulation of such flows it is essential to incorporate
a rigorous Equation of State (EoS) to accurately predict the ther-
modynamic properties and phase equilibria. However, the use of
such an EoS in the context of a computational model necessarily
incurs a significant computational overhead which, even when the
simplifying assumption of one-dimensional flow is made, makes
the simulation of large domains and long time scales impractical.
Efforts to reduce the impact of this computational weight com-
monly focus on reducing the cost of evaluating the EoS itself, either
by approximation of the thermodynamic model through inter-
polants (Swesty, 1996; Mahgerefteh and Abbasi, 2007) or more
recently using Differential Algebra (Re et al., 2014). In cases where
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only a single component is of interest, as in the case of CO2 (Wareing
et al., 2012), simplified EoS have also been introduced.

As the number of evaluations of the EoS required is propor-
tional to the discretisation used in a simulation, further reductions
in runtime may  be made by reducing the overall number of com-
putational cells used while retaining accuracy where required.
Hence, to complement the modelling strategies described above,
the use of Adaptive Mesh Refinement (AMR) techniques represents
another possible tool for further efficiency. The application of AMR
for CFD is widespread (Pelanti and LeVeque, 2006; Gourma et al.,
2013; Brown et al., 2014), with various methodologies applied ran-
ging from the popular hierarchical box-structured techniques, first
described by Berger and Oliger (1984), to moving grid methods
(see for example Tang and Tang, 2003; Kelling et al., 2014). The
former begin with an underlying coarse grid and proceed to iden-
tify and refine areas to a predefined level where required; though
successful, the hierarchical approach requires the implementation
of complex data structures (Berger, 1991) and a means for deal-
ing with the artificial internal boundaries at the refined regions
(Berger and Oliger, 1984; Berger and Le Veque, 1998). While not
requiring such complex data structures, the moving grid technique
has the drawback of requiring the solution of an additional equa-
tion.

As an alternative, a piecewise-uniform adaptive grid (PAG)
method was  developed by Fraga and Morris (1996). This tech-
nique, originally developed for the capture of soliton waves in
dispersive equations, employs a single, piecewise uniform grid in
which the spatial discretisation and time stepping algorithm are
wholly decoupled. Importantly however, this method has only been
applied to scalar problems without shocks.
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The aim of this paper is twofold: firstly, to extend the PAG
method to systems of equations and to test the methodology in
the presence of shock waves; secondly, to apply the technique to
two-phase flows where a rigorous EoS is applied to quantify the
increase in efficiency gained in problems of industrial interest.

The work proceeds as follows: Section 2 presents the PAG
method and its adaptation to systems of equations. Section 3
presents the mathematical model for one-dimensional fluid
flow, while Section 4 describes the numerical solution technique
employed in this work, the AUSM+-up scheme (Liou et al.,
2008).

Section 5 shows the verification of the PAG method in two
shocktube test problems, the classical Sod’s problem (1978) and a
problem suggested by Toro (2009). Following this, the PAG method
is applied to a transient two-phase problem to demonstrate its
capability in capturing the pertinent flow phenomena including
phase change and shock wave propagation. CO2 is chosen as the
working fluid given its extensive use as a refrigerant and its role in
Carbon Capture and Sequestration (CCS). In each case, the impact
of the use of the PAG method on the CPU runtime is reported.
Conclusions are drawn in Section 6.

2. The piecewise-uniform adaptive grid (PAG) method

The PAG method (Fraga and Morris, 1992, 1996) is based on
identifying regions of the spatial domain that require refinement
through the analysis of the geometry of the solution profile. The
original application domain was the solution of soliton-generating
(Zabusky and Kruskal, 1965) nonlinear dispersive wave equations.
The geometric analysis was used to identify the locations of soli-
tons, based on the assumption that the critical regions of the spatial
domain were those where the solitons were present. No other crite-
ria, such as a posteriori error estimation, were used in defining the
adapted grid.

An important property of the grid generated by this method
is that the points are distributed in a piecewise-uniform fash-
ion. This was motivated by the observation that many numerical
methods, both for discretisation in the spatial dimension and for
time-stepping, have been developed with an implicit assumption
of uniformity in the grid spacing. When non-uniformity is present,
these methods often suffer losses in accuracy, typically losing
one order of accuracy, and become more susceptible to stability
issues (Russell and Christiansen, 1978). It was found that if non-
uniformity in the adapted grid were present in regions that were
not critical, i.e. those where a coarser grid was appropriate, prob-
lems with accuracy and stability were minimised. Hence, the PAG
method was constructed to generate a nonuniform grid which con-
sists of a set of contiguous non-overlapping uniform sub-meshes,
without the use of artificial internal boundary conditions.

The basic approach of the PAG method can be summarised as
follows: locate each soliton in the solution, place a fine mesh, with
uniform spacing hgoal, so as to cover the support for each soliton
and fill in the gaps between each fine mesh with more coarsely
spaced points. Each sub-interval, be it the support for a soliton
or a gap between two solitons, is discretised uniformly. However,
any numerical method used will work on the whole mesh at once,
considering it to be a nonuniform mesh overall.

In the original implementation (Fraga and Morris, 1996), it was
noted that it was not necessary to use the solution values alone to
identify regions of uniformity. Instead, an approximation to the first
derivative of the solution profile, using a simple first-order finite
difference approximation, could be used to locate regions of large
change in the spatial dimension, such as shocks. The PAG construc-
tion could be applied to the first derivative of the solution with no
change in the underlying algorithm. This suggested improvement

was considered in the simulation of a fixed bed system (Fraga, 1998)
and is used as the basis for application below.

Algorithm 1. Extension of PAG algorithm (Fraga and Morris, 1996)
for adaptive grid generation with multiple dependent variables
Given: Profile for each of m indicator variables Ii at positions xi , i  = 1, . . .,  n
Returns: Adapted grid suitable for all dependent variables.
1:  for j ← 1 to m do
2:  Imin ← min

i
(Ij

i
)

3: Imax ← max
i

(Ij
i
)

4:  cutoffj ← Imin + Imax−Imin
Smin

5: end for
6: S =∅ {Initially empty combined interval list}
7:  for i ← 1 to n do
8:  if not in soliton then
9: if any

j

(Ij
i

> cutoffj) then

10: in soliton ← true
11: start of interval ← xi

12: end if
13: else
14: if all

j
(Ij

i
< cutoffj) then

15: in soliton ← false
16: end of interval ← xi

17: S ← insert([start of interval, end of interval])
18: end if
19: end if
20: end for
21: generate new grid based on intervals of refinement S

The PAG method has only ever been used for single equations.
Application to problems with multiple dependent variables, such
as the problems described below, requires extending the PAG algo-
rithm to base the adaptive grid generation on multiple solution
profiles simultaneously. The extended algorithm is described in
Algorithm 1. The solution profile for each indicator variable is
analysed simultaneously using the base PAG procedure for iden-
tifying regions of refinement. The resulting grid will possibly have
more points than required at any given spatial location for a given
dependent variable but there will be at least one variable that
requires that level of refinement. Having a single adapted grid for
all dependent variables makes the implementation of a numerical
procedure easier.

3. Model formulation

3.1. Fluid dynamics

The governing equations for one-dimensional single-fluid flow
are based on the Euler equations:

∂U
∂t
+ ∂F(U)

∂x
= 0, (1)

where

U =

⎛
⎝ �

�u

�E

⎞
⎠ , F(U) =

⎛
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�u2 + P

�uH

⎞
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and where u and � are the velocity and density respectively. P
is the system pressure, E and H represent the specific total mixture
energy and total enthalpy respectively, defined as:

E = e + 1
2

u2 (2)

H = E + P

�
, (3)

where e is the specific internal energy.
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