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a  b  s  t  r  a  c  t

Determining  the  minimum  number  of  units  is an  important  step  in  heat  exchanger  network  synthesis
(HENS).  The  MILP  transshipment  model  (Papoulias  and  Grossmann,  1983)  and  transportation  model
(Cerda  and  Westerberg,  1983) were  developed  for this  purpose.  However,  they  are  computationally
expensive  when  solving  for large-scale  problems.  Several  approaches  are  studied  in this  paper  to  enable
the  fast  solution  of  large-scale  MILP  transshipment  models.  Model  reformulation  techniques  are  devel-
oped for  tighter  formulations  with  reduced  LP relaxation  gaps.  Solution  strategies  are  also  proposed  for
improving  the  efficiency  of the  branch  and  bound  method.  Both  approaches  aim  at  finding  the  exact  global
optimal  solution  with  reduced  solution  times.  Several  approximation  approaches  are  also  developed  for
finding good  approximate  solutions  in relatively  short  times.  Case  study  results  show  that  the  MILP  trans-
shipment  model  can  be solved  for relatively  large-scale  problems  in  reasonable  times by  applying  the
approaches  proposed  in  this  paper.

© 2015  Published  by Elsevier  Ltd.

1. Introduction

Heat exchanger network synthesis (HENS) has been an impor-
tant topic in power, refining and chemical industries for several
decades due to its crucial role in energy savings and cost reduc-
tion. Recently it is also of increased interest in broader areas,
including carbon capture and storage (CCS), water treatment and
energy polygeneration. HENS has been extensively studied in pro-
cess systems engineering research, and a number of methodologies
have been developed. Linnhoff and Hindmarsh (1983) proposed
the pinch design method, which is based on physical insight
for the maximum heat recovery in heat exchanger networks.
Mathematical programming based approaches were developed by
Papoulias and Grossmann (1983), Cerda et al. (1983) and Cerda
and Westerberg (1983). Both methods are now widely used in
grassroots design and retrofit of heat exchanger networks. Detailed
reviews on developments of HENS methods can be found in
Gundersen and Naess (1988), Furman and Sahinidis (2002), Morar
and Agachi (2010) and Klemeš  and Kravanja (2013).
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Two different types of HENS approaches have been studied:
sequential and simultaneous. In the sequential approach the HENS
problem is solved in three steps (Biegler et al., 1997): first, the utility
cost (or consumption) is minimized with a linear programming (LP)
model (Papoulias and Grossmann, 1983; Cerda et al., 1983); second,
the number of heat exchangers is minimized with a mixed-integer
linear programming (MILP) model to determine the optimal stream
matches (Papoulias and Grossmann, 1983; Cerda and Westerberg,
1983); finally, the total investment cost is minimized with a non-
linear programming (NLP) model, and the optimal heat exchanger
network structure is derived (Floudas et al., 1986). In contrast to
the target-based sequential approach, the simultaneous synthe-
sis approach optimizes energy, number of units and total heat
exchanger area simultaneously in a mixed-integer nonlinear pro-
gramming (MINLP) model (Yee and Grossmann, 1990; Ciric and
Floudas, 1991). Due to its computational complexity, the simul-
taneous approach usually can only solve problems with small to
medium sizes. The sequential approach, on the other hand, decom-
poses the HENS problem into several smaller subproblems that are
much easier to solve, and hence is still considered the most practical
way to solve industrial-scale HENS problems.

In the sequential approach, minimization of the number of heat
exchangers is a key step to determine the optimal structure and
the minimum fixed cost of heat exchanger networks. The MILP
transhipment and MILP transportation models are basic tools to
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calculate the minimum number of units. The major difference
between the two is that the former uses a heat cascade while
the latter uses direct matches, which makes the size of the
former model significantly smaller. These models have been further
developed during the last 20 years. A vertical MILP transship-
ment model was proposed by Gundersen and Grossmann (1990)
and Gundersen et al. (1996), in which non-vertical heat trans-
fer (i.e., criss-crossing) was minimized and the optimal solution
with smallest heat exchange area could be identified. Floudas and
Grossmann (1986) extended the MILP transshipment model for
multiperiod operations. The MILP transshipment/transportation
models were also incorporated into the simultaneous approach
for heat exchanger network design (Shethna et al., 2000; Barbaro
and Bagajewicz, 2005) and retrofit (Nguyen et al., 2010). In pro-
cess synthesis, the MILP transshipment model has been applied to
the optimal design of heat exchanger networks in a wide range
of systems and processes, such as refrigeration systems (Shelton
and Grossmann, 1986), batch/semi-continuous processes (Zhao
et al., 1998), water utilization systems (Bagajewicz et al., 2002) and
hybrid transportation fuel production processes (Elia et al., 2010).

Despite significant advances in MILP solvers (e.g., CPLEX,
GUROBI, XPRESS) and application of the MILP tranship-
ment/transportation models, solving the MILP itself is still
quite challenging. Furman and Sahinidis (2001) proved that the
minimum number of matches problem is NP-hard in the strong
sense due to its combinatorial nature. So far the MILP trans-
shipment/transportation models are quite difficult to solve for
large-scale problems, as will be shown later, rendering the mini-
mum  number of units problem as the major bottleneck in the HENS
procedure. Only a few papers have investigated efficient solution
approaches for large-scale MILP transshipment/transportation
models. Gundersen et al. (1997) developed a MILP transshipment
formulation with tighter heat transfer upper bounds and indicated
that the gap between the MILP solution and its LP relaxation
could be reduced by using the tighter formulation. Anantharaman
et al. (2010) systematically studied approaches for improving
the solution performance for the MILP transshipment model.
The authors proposed three major approaches: pre-processing to
reduce model size using insight and heuristics, model modifica-
tion/reformulation, and improving efficiency of the branch and
bound method. Several ideas for model modification and reform-
ulation were investigated in this article, including decreasing the
upper bound, adding integer cuts and reformulating the original
model to set-partitioning formulations. The authors tested these
ideas for several cases with the size of up to 22 process streams,
and showed that the LP relaxation was significantly tightened.
However, the above two papers did not present the effect on solu-
tion times. Hence, the actual computational performance of these
model reformulations is unknown. Pettersson (2005) developed
an approximate approach, which includes match set reduction and
grouping, and solved the minimum number of matches problem
with up to 39 process streams in reasonable times. The minimum
number of units problem was also solved by evolutionary methods
(Mocsny and Govind, 1984; Shethna and Jezowski, 2006). These
approximate approaches, however, cannot guarantee the global
optimal solution and also cannot indicate how far the obtained
solution is with respect to the global optimum.

This paper investigates several rigorous and approximate
approaches for reducing the computational time required to solve
large-scale MILP transshipment models. Both LP relaxation and
solution time results are presented. The remaining part of this paper
is organized as follows. Section 2 presents solution times of MILP
transshipment models for a variety of cases with small to large
sizes, discusses reasons for the slow computation, and then shows
results for weighted matches. Section 3 proposes several refor-
mulations, including model disaggregation and addition of integer

cuts, and then compares their results with the original model. Sev-
eral solution strategies, e.g., branching priority, strong branching,
parallel computing, are discussed in Section 4. Finally, Section 5
describes several approximation approaches, including using a rel-
ative optimality gap, a combined model, a reduced MILP model and
a NLP reformulation. The paper is concluded in Section 6.

2. Preliminary results

2.1. MILP transshipment model – case study and results

The MILP transshipment model is usually difficult to solve for the
full heat exchanger network due to its computational complexity.
Instead, the full network is partitioned into several subnetworks
defined by the pinch points, and then the MILP transshipment
model is solved for each subnetwork. This is a reasonable proce-
dure because stream matches across the pinch are usually avoided
(for exceptions see Wood et al. (1985)).

Before solving the MILP transshipment model, the following LP
transshipment model (Papoulias and Grossmann, 1983) is solved,
which provides the minimum utility consumption and the location
of pinch points that partition the full network into subnetworks:
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where K is the index set for all temperature intervals; cm and cn are
the unit cost of hot utility m and cold utility n, which are known
parameters; Q H

ik
and Q C

jk
are the heat content of hot process stream

i and cold process stream j at temperature interval k, which are
known parameters; Q S

m and Q W
n are the heat load of hot utility m and

cold utility n; Qijk, Qmjk, and Qink are the amount of heat exchanged
between hot stream i and cold stream j, hot utility m and cold stream
j, and hot stream i and cold utility n at interval k; Rik and Rmk are
the heat residual of hot stream i and hot utility m exiting interval k.
Pinch points are identified by those temperature intervals for which
all the heat residuals are zero. The index sets are defined below:

Hk = {i|hot stream i supplies heat to interval k}

H′
k = {i|hot stream i is present at interval k or at a higher interval}

Ck = {j|cold stream j demands heat from interval k}

Sk = {m|hot utility m supplies heat to interval k}

S′
k = {m|hot utility m is present at interval k or at a higher interval}

Wk = {n|cold utility n extracts heat from interval k}
Next, the MILP transshipment model is solved for each subnetwork,
obtaining the minimum number of units and one set of matches
between hot and cold streams that achieve the minimum number of
units. In this model, the heat loads of hot and cold utilities are fixed
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