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Abstract: The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and 
prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann method (LBM) and is verified, and then 
the dynamic characteristics of the collapsing bubble with the second collapse is investigated. The widely used Shan-Chen model in 
the LBM multiphase community is modified by coupling with the Carnahan-Starling equation of state (C-S EOS) and the exact 
difference method (EDM) for the forcing term treatment. The simulation results of the bubble profile evolution by the LBM are in 
excellent agreements with the theoretical and experimental results. From the two-dimensional pressure field evolution, the dynamic 
characteristics of the different parts during the bubble collapse stage are studied. The role of the second collapse in the rigid boundary 
damage is discussed, and the impeding effect between two collapses is demonstrated. 
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Introduction  

The bubble collapse near a rigid boundary may 
lead to a serious material damage owing to the resu- 
lted high velocities, pressures, temperature, but on the 
other hand, it could also be utilized in various impor- 
tant applications, such as for environmental protection, 
high-intensity ultrasonic therapy and material surface 
cleaning[1]. However, as too many phenomena are 
involved, a theoretical model is difficult to establish, 
and under particular boundary conditions, the analyti- 
cal solution is usually impossible. Therefore, the nu- 
merical simulation becomes a powerful way to gain an 
understanding. The conventional numerical simulation 
methods for the non-spherical cavitation bubble mai- 
nly include the finite volume method (FVM), the 
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finite element method (FEM) and the boundary eleme- 
nt method (BEM)[2]. In the numerical simulations 
based on the classical partial differential equation, the 
methods to track or capture the interfaces are required 
(such as the volume of fluid (VOF) method  or the 
level set method (LSM)[3]). In addition, the Poisson 
equation needs to be solved to satisfy the continuity 
equation, which drastically reduces the computational 
efficiency[4]. 

During the past decades the lattice Boltzmann 
method (LBM) has emerged as a powerful tool for 
simulating multiphase flow problems[4-7]. As a power- 
ful tool for the numerical simulations and investiga- 
tions of the multiphase flows, the LBM has many 
advantages, including clear physical pictures, easy 
implementation of boundary conditions, and fully 
parallel algorithms[4]. Particularly, it is not required to 
track or capture the interfaces in the LBM models due 
to their mesoscopic nature. The Shan-Chen model, 
which is widely used in the LBM multiphase commu- 
nity due to its simplicity, high computational efficie- 
ncy and high flexibility, has been introduced into the 
field of the bubble cavitation recently. The first atte- 
mpt to validate the application of the Shan-Chen model 
in the LBM for cavitation problems was made by 
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Sukop and Or[8]. Chen et al.[9] simulated the cavitating 
bubble growth using a modified Shan-Chen model 
with a large density ratio in both quiescent and shear 
flows, and the results were compared with the 
Rayleigh-Plesset equation. The acoustic cavitation of 
the spherical bubble was simulated recently by Zhou 
et al.[10] using the original Shan-Chen pseudopotential 
model, and the result was compared with the Keller 
equation. Mishra et al.[11] introduced a model of cavi- 
tation based on the Shan-Chen multiphase model that 
allows for coupling between the hydrodynamics of a 
collapsing cavity and the supported solute chemical 
species. However, the pressure field evolution in the 
bubble collapse stage near a rigid boundary has not 
been extensively investigated yet, in particular, when 
multiple collapses exist. In addition, due to the inhe- 
rent parallelism, the LBM promises to be a powerful 
tool for the studies of the multi-bubbles collapse and 
even the cavitation field. 

The evolutions of the bubble profile and the jet 
velocity were investigated by experiments with respe- 
ct to the dynamics of the bubble collapse near rigid 
boundary[12-14]. As an intuitive clue to investigate the 
mechanism of the collapsing bubble, the pressure field 
evolution and the damage of the rigid boundary are 
more complex and diverse when multiple collapses 
exist. However, the direct measurement by the experi- 
mental method is difficult because all the intrusive 
measurements will disturb the original pressure field, 
and the non-intrusive methods cannot be applied un- 
less the fluctuation of the pressure is large enough. In 
order to visualize the impulsive high pressure regions 
around the collapsing bubbles, Philipp[12] used the 
shadow graph method in a high-speed photograph. But 
the details of the pressure field cannot be obtained 
except by the emitted shock waves. In Ref.[15], the 
velocity field and the pressure distribution around the 
bubble in the dielectric fluid were studied numerically. 
By solving the Navier-Stokes equation, Liu[16] simula- 
ted the pressure distribution numerically outside a 
nonlinear resonance bubble in one dimension. How- 
ever, the 2-D pressure distribution and the evolution 
of a collapsing bubble throughout the whole colla- 
psing stage were not obtained. Since the pressure 
distribution can be directly obtained by solving the 
equation of state (EOS), the LBM is very effective to 
simulate the 2-D or 3-D pressure field and the evolu- 
tion of a collapsing bubble near a rigid boundary. 

In the present work, an approach of bubble colla- 
pse simulation is developed based on a modified 
Shan-Chen model to investigate the bubble collapse 
near a rigid boundary, especially to investigate the 
2-D pressure filed evolution around a collapsing bu- 
bble associated with twice collapses. The modified 
Shan-Chen model is coupled with the Carnahan- 
Starling equation of state (C-S EOS) and the exact 
difference method (EDM) in the interaction forcing 

term treatment, to obtain a large density ratio liquid- 
vapor system while reducing the spurious currents and 
minimizing the thermodynamics inconsistency. In this 
work, the simulations by the LBM is verified through 
a comparison between the simulation results of the 
bubble profile evolution and the experimental results. 
Subsequently, the 2-D pressure field evolution around 
the collapsing bubble associated with twice collapses 
is investigated, and the role of the second collapse in 
the rigid boundary damage is discussed. 
 
 
1. Numerical model 

The LBM is a mesoscopic numerical simulation 
method based on statistical physics and can well simu- 
late the Navier-Stokes equations at the macroscopic 
scale[4-6]. In the LBM, the motion of fluid is described 
by a set of particle distribution functions. The standard 
LBM with a force term based on Bhatnagar-Gross- 
Krook (BGK) collision term, called the LBGK, can be 
expressed as follows 
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where fα  is the density distribution function at the 
lattice site x  and the time t  along each velocity 
direction α , eqfα  denotes the equilibrium distribution 
function, = /c x t∆ ∆  is the lattice speed with x∆  and 

t∆  as the lattice spacing and the time step, respective- 
ly. The dimensionless relaxation time, τ , is related 
with the viscosity by 2= /( + 0.5)stct ν ∆  with =sc  

RT  as the lattice sound speed. The left-hand side of 
Eq.(1) stands for the streaming process whereas the 
right-hand side represents the collision process, which 
leads to the local equilibrium on a time scale τ . 

The discrete velocity αe  depends on the particu- 
lar velocity model. For the D2Q9 (2-D nine velocity) 
model, αe  is given by 
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