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a  b  s  t  r  a  c  t

Biopharmaceutical  manufacturing  involves  multiple  process  steps  that  can  be challenging  to  model.
Oftentimes,  operating  conditions  are  studied  in bench-scale  experiments  and then  fixed  to specific  values
during  full-scale  operations.  This  procedure  limits  the  opportunity  to  tune  process  variables  to  correct
for  the  effects  of disturbances.  Generating  process  models  has the potential  to increase  the  flexibility  and
controllability  of the  biomanufacturing  processes.  This  article  proposes  a statistical  modeling  methodol-
ogy  to  predict  the  outputs  of biopharmaceutical  operations.  This  methodology  addresses  two  important
challenging  characteristics  typical  of data  collected  in  the  biopharmaceutical  industry:  limited  data  avail-
ability and  data  heterogeneity.  Motivated  by  the  final  aim  of  control,  regularization  methods,  specifically
the  elastic  net,  are  combined  with  sampling  techniques  similar  to  the bootstrap  to  develop  mathematical
models  that  use  only  a small  number  of  input  variables.  This  methodology  is evaluated  on  an  antibody
manufacturing  dataset.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The U.S. biotechnology sector has had double-digit growth
rates in recent years (IMARC Group, 2012). In 2012, sales of
biologics were approximately $63.6 billion, with monoclonal anti-
bodies (mAbs) representing the largest fraction of this market with
approximately 39% of sales (Aggarwal, 2014). Modeling of the man-
ufacturing process is one possible way to both support the growing
biologics market as well as decrease costs via improved control and
understanding of process operations. Modeling can play an impor-
tant role in understanding, controlling, and optimizing the process
steps used in these processes (Tziampazis and Sambanis, 1994). The
U.S. Food and Drug Administration and International Conference on
Harmonization recommend modeling in the development of bio-
logics to estimate variability, provide process understanding, and
establish a control strategy (U.S. Department of Health and Human
Services, 2011; ICH, 2009).

Process modeling techniques can be grouped into two broad
categories: first-principles and data-based. This article focuses
on data-based modeling, which is more often applied in
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(bio)pharmaceutical manufacturing facilities. Data-based models
have been applied to cell culture characterization (Mercier et al.,
2013; Kirdar et al., 2007; Rathore et al., 2011), quality control
(Roggo et al., 2007; Chen et al., 2011), process monitoring (Rathore
et al., 2011; Read et al., 2010a,b; Bonné et al., 2013), and down-
stream operations (Rathore et al., 2011). A drawback of current
data-based methods applied in the biopharmaceutical industry is
that the models that are produced are not easily interpretable
because they rely on subspaces that do not have direct physical
meaning.

With this motivation, a successful biopharmaceutical model
would achieve three goals: (1) model accuracy, (2) model simplic-
ity, and (3) model interpretability. These aims have the caveat of
using only a small amount of heterogeneous data, as data for bio-
pharmaceutical manufacturing are typically both heterogeneous
and relatively limited compared to most mature industries such
as in chemicals, refining, petrochemicals, and pulp and paper.

One way  to achieve these goals is through the identification of
the input variables in the process that exhibit the largest effects on
the output variables. It is common in the biopharmaceutical indus-
try for a dataset to have more measurements, p, than observations,
N. Most measurements are only taken once in a single batch moving
through the production process and few replicates are performed
due to time and cost constraints. The construction of predictive
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models from such data sets can be made even more challenging
because the collected data are typically highly correlated between
batches, that is, the data sets are highly ill-conditioned. Regulariza-
tion methods have been identified as possible approaches for such
problems because of their ability to simultaneously handle input
selection and model estimation (Pampuri et al., 2001).

This article first provides some background on regularization
methods, specifically the lasso and elastic net. Modifications are
then introduced to better handle small heterogeneous datasets.
Finally, the methodology is evaluated for a manufacturing-scale
process in the biopharmaceutical industry and the results are
compared to other data-based modeling techniques used in the
industry.

2. Background on regularization

The simplest form of regression finds a vector of weights,  ̌ ∈ Rp,
that can be used to predict the scalar output y using the vector
in inputs, x ∈ Rp. The basic approach to finding  ̌ is called ordinary
least squares (OLS). The OLS problem is formulated to minimize the
error:

Err(ˇ) = 1
N

N∑
i=1

(yi − xT
i ˇ)

2
, (1)

which has the solution

ˆ̌
OLS = (XT X)

−1
XT y, (2)

where X ∈ RN×p when XTX is invertible. Applying this method can
lead to over-fitting of the model, especially as the number of
input variables (p) grows large. Regularization techniques are one
method to prevent over-fitting.

Lasso (Tibshirani, 1996), also known as �1 regularization, is an
optimization formulation for parameter estimation that solves

ˆ̌
lasso = arg min

ˇ, ˇ0

1
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p∑
j=1

∣∣ˇj

∣∣ , (3)

where N is the number of experiments, yi is the ith scalar response,
xi ∈ Rp is the data vector at observation i, � is a nonnegative regu-
larization parameter, ˇ0 is a scalar parameter, and  ̌ ∈ Rp is a vector
of model parameters. By adding the penalty term to the objective,
the size of the coefficient vector is effectively constrained, which
helps to prevent wild fluctuations of the coefficient vector that can
be due to fitting noise in the data. The penalty is equivalent to the
�1-norm on the coefficient vector, hence the name.

The lasso technique is useful to choose the subset of predictors
(xi) that exhibit the strongest effect on y because solutions to the
lasso are sparse vectors, that is, the models only include a sub-
set of the possible inputs (“dense” refers to models that include
all possible inputs; these terms do not refer to the quality of data
within each type of measurement). Because of the �1 constraint,
solutions to the lasso can be thought of as lying on a vertex point
of the feasible region, leading to certain coefficients to be exactly
zero (Hastie et al., 2013; Rasmussen and Bro, 2012) (see Fig. 1 for a
simple representation).

The elastic net (EN) (Zou and Hastie, 2005) is an optimization
formulation for parameter estimation that is formulated as:

ˆ̌
EN = arg min

ˇ0,ˇ

1
2N

N∑
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(yi − ˇ0 − xT
i ˇ)

2 + �P˛(ˇ), (4)

Fig. 1. Representation of parameter selection using the lasso considering the
constrained optimization problem. The shaded region represents the constraint
imposed by the penalty term and the ellipses are the contours of the least squares
error function. The solution often lies on a vertex of the constraint, causing some
parameters to be exactly zero. Figure based on (Hastie et al., 2013).
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(
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2
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N is the number of experiments, yi is the ith scalar response,
xi ∈ Rp is the data vector at observation i, � is a nonnegative regu-
larization parameter, ˇ0 is a scalar parameter,  ̌ ∈ Rp is a vector of
model parameters, and  ̨ is on the interval (0,1].

Although the elastic net is very similar to the lasso, there are
some key differences. The EN is particularly useful when the num-
ber of predictors (p) is greater than the number of observations
(N). If the lasso is applied to a data set where p > N, the solution is
not unique. By adding a second term, the problem becomes convex
even when p > N (Zou and Hastie, 2005).

EN is also better at handling data where the inputs are corre-
lated. Lasso is only able to select up to N predictors and will not
reveal grouping relationships. Instead, the lasso will choose one of
the correlated variables, and in highly correlated cases, can switch
between variables in the set. However, the EN formulation uses
a strictly convex penalty function and will guarantee that equal
weighting is given to inputs that are identical (Zou and Hastie,
2005). Fig. 2 compares the penalty constraint contours for ridge
regression which uses a quadratic penalty, lasso, and EN. EN can
produce models that are sparse and can handle correlated data.

These points are illustrated here using a simple four-
dimensional case study where x1 and x2 are specified then x3 and x4
are calculated to equal x1 and x2, respectively, with a small amount
of random noise. The parameter traces in Fig. 3 show how EN groups
the variables where the lasso uses one variable from each grouped
set. The group is very robust to the selection of values of the penalty
term �. By including the grouped variables in the elastic net, the
noise in the grouped measurements can be averaged in the cal-
culation of the predictions produced by the model. Lasso selects a
sparser model for a given value of �, but at the cost of not being able

Fig. 2. Penalty constraint contours for constant values of
∑
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∣∣q (left two images

are  for the ridge regression and lasso penalties) and
∑
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∣∣) (right-

most image is for the elastic net penalty). Figure is based on (Hastie et al., 2013).
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