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a  b  s  t  r  a  c  t

The  paper  addresses  nonlinear  estimation  problems  on  nonlinear  processes  containing  several  lab  mea-
surements  sampled  slowly  and  with  long  delay,  which  is the  usual  case  in  industrial  polymerization
applications.  A  moving  horizon  estimation  algorithm  is  developed  to compute  the  theoretical  optimal
solution  given  the multi-rate  measurements.  In  this  algorithm,  the  MHE  window  is  recalculated  as  the
new lab  measurement  becomes  available.  Simulation  studies  on  a polymerization  process  with  plant
model  mismatch  are  performed.  Observability  analysis  and  estimation  results  of MHE  with  and  with-
out  lab  measurements  show  that lab measurements  help  identify  the disturbances  and  can  improve  the
performance  of  both  estimation  and  closed-loop  control.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Advanced feedback control for nonlinear systems such as model
predictive control (MPC) includes a state estimator which uses the
past inputs and measurements to provide the best estimate of the
current state of the system. The control inputs are then deter-
mined by the regulator based on the state estimate and the model.
Thus, the performance of closed-loop MPC  is directly affected by
the quality of the state estimates. The states of many chemical
processes are complex product properties and are not directly mea-
surable from sensors. Also, these processes are characterized by
both nonlinearity in the dynamics and significant levels of pro-
cess and sensor noise. To solve the nonlinear state estimation
problem, a natural starting point is Bayesian estimation, which
maximizes the conditional probability of all state sequence given
all available measurements. For the application purpose, Bayesian
estimation is specified as the optimization-based methods includ-
ing full information estimation (Rawlings and Bakshi, 2006) and
moving horizon estimation (MHE) (Alessandri et al., 2008; Rao
and Rawlings, 2002; Rao et al., 2003; Robertson and Lee, 2002;
Robertson et al., 1996). MHE  truncates the objective by a fixed
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horizon and therefore avoids an increasing computational burden.
MHE  is usually slower than one-step filter-based methods such
as extended Kalman filter (EKF) (Jazwinski, 1970; Bryson and Ho,
1975) but often shows better stability, accuracy and convergence
to the true state (Haseltine and Rawlings, 2005).

A significant industrial challenge for nonlinear state estimation
is that the different measurements may  not be sampled at the same
rate. The system may contain fast measurements such as temper-
ature and pressure, which can be sampled online and be available
immediately, and slow measurements such as melt index, density,
and viscosity, which are sampled infrequently and usually have
measurement delays. Polymerization processes are typically char-
acterized by multi-rate sampling measurements, since the polymer
properties are usually measured by lab analysis instead of auto-
matic sensors. Different estimation technologies on systems with
multi-rate sampling measurements have been proposed. As a rough
approximation, the missing data of slow measurements can be
predicted by polynomial extrapolation such that the nominal esti-
mation method can be applied (Tatiraju et al., 1999; Zambare et al.,
2003). If a deterministic observer is available, it can also be adjusted
to handle multi-rate measurements (Zambare et al., 2002). Most
efforts on the estimation with multi-rate sampling measurements
are Extended Kalman Filter (EKF)-based, including parallel filters
(Larsen et al., 1998), fixed-lag smoothing (Gudi et al., 1994; Mutha
et al., 1997) which augments the states to cover the measurement
delay, and filter recalculation starting from the time the slow mea-
surement was  taken (Prasad et al., 2002). Gopalakrishnan et al.

http://dx.doi.org/10.1016/j.compchemeng.2015.04.015
0098-1354/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2015.04.015
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2015.04.015&domain=pdf
mailto:lji2@wisc.edu
mailto:rawlings@engr.wisc.edu
dx.doi.org/10.1016/j.compchemeng.2015.04.015


64 L. Ji, J.B. Rawlings / Computers and Chemical Engineering 80 (2015) 63–72

(2011) compare the different methods and extends these meth-
ods to the case of time-varying and uncertain delays. MHE  studies
on system with multi-rate measurements have also been devel-
oped. Krämer et al. propose two MHE  studies (Krämer et al., 2005;
Krämer and Gesthuisen, 2005) using either a fixed or a variable
structure. The former assumes a zero order hold on the last available
measurement and the latter uses only the slow measurements in
the sample times when they are available (Krämer and Gesthuisen,
2005). López-Negrete and Biegler (2012) also apply a variable struc-
ture of MHE  by setting the MHE  horizon large enough to cover both
the sampling time and the arrival time of slow measurements.

Here we have particular interest in industrial online implemen-
tation of MHE  on large-scale polymerization processes, in which
the polymer properties are usually measured in the lab, charac-
terized by long sampling interval and long time delays. In this case,
the method proposed in López-Negrete and Biegler (2012) becomes
impractical because the size of the MHE  problem would become too
large. Both the large dimension of the state and the large horizon
to cover the measurement delay increase the size of the MHE  prob-
lem. Although this issue can be fixed by manually slowing down
the sampling of the fast measurements, in this paper we propose a
method using the original sampling rates of the measurements. We
overcome the obstacles by combining the idea of estimator recalcu-
lation with the general MHE  formulation. Upon the arrival of some
lab measurement, MHE  performs the recalculation starting from its
sampling time. This method yields the solution of the Bayesian esti-
mation on processes with multi-rate sampling measurements. The
method also works for the case with irregular sampling intervals
or measurement delays. Due to the computational burden required
for the recalculation step, we demonstrate situations in which uti-
lizing delayed lab data is worthwhile. Lab measurements should
be used when some states are unobservable using only the fast
measurements, but these states become observable when lab mea-
surements are included (Mutha et al., 1997; Tatiraju et al., 1999;
Zambare et al., 2002). Lab measurements may  help improve the
transient behavior of the estimator by recovering quickly from an
inaccurate prior (Tatiraju et al., 1999; López-Negrete and Biegler,
2012). As a second more complicated case study, we  investigate
when the lab measurements help identify the plant model mis-
match and help the estimator converge to the true state (Mutha
et al., 1997).

In this paper, we first derive the algorithm for recalculated
MHE  with delayed lab measurements, starting from the objec-
tive of Bayesian estimation. The derivation is similar to previous
results (Rawlings and Bakshi, 2006) but here the structure of mea-
surement functions becoming time-varying. A gas-phase ethylene
copolymerization process model from the literature (McAuley et al.,
1990; Dadebo et al., 1997; Gani et al., 2007) is then studied.
See also Ramlal et al. (2007) for state estimation and control of
a gas-phase polymerization process without lab measurements.
Challenges of estimation on this process include weak observabil-
ity, large state dimension, and strong nonlinearity. The process
also contains two important polymer properties, melt index and
polymer density, which are critical indicators of polymer grades
(McAuley and MacGregor, 1992) and usually used as the control
targets (McAuley and MacGregor, 1993). In a previous study, we
assumed these properties were also fast measurements (Lima et al.,
2013). To be more realistic, here we assume they are measured in
a lab and subject to long sampling intervals and time delays. We
perform a quantitative observability analysis that verifies that the
inclusion of lab measurements could improve the observability of
the global system and some critical states. These conclusions were
reached only qualitatively in Mutha et al. (1997). Estimation of the
process with delayed lab measurements shows improved accuracy
when subject to an unmodeled deterministic disturbance. Finally, a
closed-loop case study shows the impact of improved estimation on

Fig. 1. An example system with multi-sampling rate measurements. The slow mea-
surements are sampled once per Ns steps and delayed by ls steps.

the closed-loop control performance. The MHE  implementation is
fast enough for online implementation including the recalculation
steps.

The paper is organized as follows. For the paper to be reason-
ably self contained, we provide a brief introduction of the nonlinear
system and multi-rate sampling measurements. We  then formu-
late the MHE  algorithm on this class of systems and show that it
is equivalent to Bayesian estimation. Then we provide the main
application of the paper: a case study of MHE  on a polymeriza-
tion process with incorporation of lab measurements. The impact of
lab measurements on system observability, estimation accuracies
and closed-loop control performance are presented. We  also dis-
cuss weaknesses of the approach and future directions of current
multi-rate measurement algorithms.

2. System with multi-rate sampling measurements

The discrete time, nonlinear system with multi-sampling rate
measurements is defined as

xk+1 = F(xk) + wk

yf
k

= hf (xk) + vf
k

ys
k+ls

= hs(xk) + vs
k
, k ∈ K

s

(1)

in which x ∈ R
n is the state, yf ∈ R

pf
is the fast measurement, and

ys ∈ R
ps

is the slow measurement. K
s is the set of k when the slow

measurements are sampled, e.g.,  when the slow sampling interval
is regular and denoted as Ns, then K

s = {k|k = iNs, i = 0, 1, . . .}; ls is
the measurement delay. Fig. 1 shows a schematic representation of
multi-rate sampled measurements.1 The manipulated input u ∈ R

m

may  also be included in the model; since it is considered a known
variable and its inclusion is irrelevant to the state estimation topic,
we suppress it in the model under consideration here. The process
is corrupted by the process noise w and the measurement noises
vf and vs, which are modeled as independent zero-mean Gaussian
variables

w∼N(0, Qw), vf ∼N(0,  Rf
v), vs∼N(0,  Rs

v) (2)

Prior information of the initial state is also assumed to be known
as x0∼N(x̄0, P0).

1 Here Ns and ls are constant for clearer illustration; but notice that our method
also work for the case when Ns and ls are variant with K

s defined accordingly.
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