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a  b  s  t  r  a  c  t

The  judicious  exploitation  of the  inherent  optimization  capabilities  of  the  Spectral-Projected-Gradient
method  (SPG)  is  proposed.  SPG  was implemented  in order  to achieve  efficiency.  The  novel  adjustments
of  the  standard  SPG  algorithm  showed  that  the parallel  approach  proves  to be  useful  for  optimization
problems  related  to process  systems  engineering.  Efficiency  was  achieved  without  having  to relax  the
problems  because  the  original  model  solutions  were  obtained  in reasonable  time.
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1. Introduction

It is widely recognized that parallelizing is far from trivial. Par-
allel models that run in multiple processors are highly modified
versions of the corresponding sequential solvers. In fact, parallel
algorithms constitute new techniques with their own advantages
and drawbacks. Though they can succeed in being faster, their
main design difficulties are sometimes related to communication
management, interaction between runs, memory requirements or
experimental evaluation (Alba, 2005).

El-Rewini and Lewis (1997) had also pointed out that par-
allel programming involves all the difficulties that comprehend
serial programming, together with additional challenges, such as
data or task partitioning, parallel debugging, and synchronization.
Unlike single-processors systems, interconnection bandwidth and
message latency dominate the performance of parallel systems.
Moreover, there is no evident way to predict the performance of a
new system. Therefore, prior to a significant investment of time and
effort, it is difficult to envisage clearly the benefits of parallelizing.
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Parallel programming does involve several daunting challenges,
but it is worthwhile! Problems not solved before become nowadays
solvable by using parallel algorithms. According to Buzzi-Ferraris
and Manenti (2010), parallel computing on personal computers is
taking its steps as a silent revolution that directly involves many
other scientific and industrial areas, naturally including Process
Systems Engineering (PSE) and Computer-Aided Process Engineer-
ing (CAPE) communities.

In the search of more realistic formulations, the need for more
rigorous modelling, but together with the modern global require-
ment of faster solutions, has grown. Hence, cost-effective solutions
are required in order to be able to address effectively large-scale
problems, which have proved to be very demanding in terms of
computational effort and efficacy, i.e. the length of time devoted to
problem-solving.

These days parallel programming has turned into an attractive
field that deserves to be carefully exploited. It is growing fast, with
an enormous application potential. Then, it constitutes a promising
methodology needing more attention by the PSE optimization com-
munity. How to address time-consuming problems is undoubtedly
a subject of interest and concern for chemical engineers, who have
sometimes resorted to parallelism. For instance, Abdel-Jabbar et al.
(1998) implemented a partially decentralized state observer on
multicomputers demonstrating the potential of parallel processing
in the field of model-based control. In turn, Chen et al. (2011)
have also accelerated their molecular weight distribution (MWD)
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calculation method by means of parallel programming. Cheimarios
et al. (2013) also exploited parallelism when modelling a chemical
vapor deposition (CVD) reactor. The time-consuming computa-
tions in the micro-scale were efficiently accelerated thanks to
the implementation of a synchronous master-worker parallel
technique. In turn, Laird et al. (2011) have addressed large-scale
dynamic optimization problems with a decomposition approach
helpful to exploit parallel computing for the Karush–Kuhn–Tucker
(KKT) system. Lately, for the contingency-constrained alternating
current optimal power flow (ACOPF) problem Kang et al. (2014)
have reported the achievement of significant improvements in
solution times by means of their parallel Schur-complement based,
nonlinear interior-point method.

Improving both the convergence and solution time of process
system optimization problems is nowadays of great significance.
The community would greatly benefit by deepening HPC knowl-
edge across the chemical engineering field, especially research
involving industry-standard software development and implemen-
tation (Piccione, 2014).

Broadly speaking, for the past two decades many non-linear
optimization problems in the PSE area have been solved by posing
them with a wide variety of strategies, such as parallel processing,
model reformulation, model decompositions, convergence-depth
control and surrogate-based approaches. Efficient non-traditional
algorithmic alternatives have been proposed in order to reduce
the computational cost of solving some demanding problems.
Kheawhom (2010) reported a constraint handling scheme that
exhibited a considerably lower computational cost than the cost
required by the traditional penalty function. In turn, Kraemer et al.
(2009) proposed a reformulation for complex large-scale distilla-
tion processes that required significantly less computational time
in order to identify local optima of better quality. In process design
and control, Wang et al. (2007) showed advantageous numerical
results by using convergence depth control. For process control,
Abdel-Jabbar et al. (1998) designed a parallel algorithm that guar-
anteed stability and optimal performance of the parallel observer.
Later, for the problem of integrated design and control optimiza-
tion of process plants, Egea et al. (2007) proposed surrogate-based
methods that compete with conventional control strategies.

Besides, for optimization problems related to planning issues,
and always working from a sequential point of view – i.e. with-
out exploiting any opportunity of parallelism – You et al. (2011)
aimed at the reduction of computational time by means of model
reformulation. With a view to solving large-scale instances effec-
tively, they proposed the following computational strategies: (I)
a two-level solution strategy and (II) a continuous approximation
method. Their approaches led to the same optimal solutions, but
with different CPU times. Moreover, for their problem about the
simultaneous route selection and tank sizing approach, You et al.
(2011) pointed out that solving the aggregated model may  become
intractable as the problem size increases, due to the combinatorial
complexity of route enumeration.

In contrast, the PSE problems are sometimes solved by relaxing
variables and conditions, thus generating non-linear subproblems
easier to tackle through linear and quadratic approximations. An
important and interesting question is the following: Can we achieve
efficiency without having to reformulate nor to relax the problem?

Nowadays, it seems natural that the trust-region methods
occupy a significant place in the PSE simulation area. Never-
theless, Spectral Projected Gradient (SPG) methods constitute an
inspiration for the acceleration of optimization algorithms via par-
allelization. SPG (Birgin et al., 2000) was born from the merging of
the Barzilai–Borwein (spectral) non-monotone concepts with clas-
sical projected gradient strategies (Bertsekas, 1976). Some authors,
like Raydan (1997) and Fletcher (2005), analyzed this kind of meth-
ods carefully.

2. Solving optimization problems by taking advantage of
parallel processing

We can rely on parallel computing in order to reduce computing
times significantly, without being necessary to resort to strate-
gies that imply model simplifications or problem reformulations.
It is efficient and practical, though it is a daunting challenge to
program it carefully. Moreover, parallel computing is useful to com-
plement other approaches. In this work parallel programming has
been applied to enhance an algorithm originally proposed by Birgin
et al. (2000), who developed a method that was born as a com-
bination of spectral nonmonotone ideas (Grippo et al., 1986) with
classical projected gradient strategies (Barzilai and Borwein, 1988).

2.1. The mathematical problem

The optimization problem considered here is a non-linear pro-
gramming (NLP) problem. Its model involves a non-linear objective
function f(x) subjected to a set of equality constraints ci(x) = 0, i = 1,
. . .,  ni; a set of inequality constraints, cj(x) ≥ 0, j = 1, . . .,  nj; and upper
and lower bounds on the continuous variables xi. Any of the func-
tions involved in both kinds of constraints can be non-linear. In its
algebraic form, the general problem is given by Eq. (1)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minxf (x)

s.t. ci(x) = 0, i = 1, . . .,  ni

cj(x) ≥ 0, j = 1, . . ., nj

li ≤ xi ≤ ui

(1)

By introducing the slack variables zj in the inequality constraints,
Eq. (1) turns into Eq. (2).⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minxf (x)

s.t. ci(x) = 0, i = 1, . . .,  ni

cj(x) − zj = 0, j = 1, . . .,  nj

li ≤ xi ≤ ui

zj ≥ 0

(2)

Both the objective function and the equality constraints can
be combined into an augmented Lagrangian function (Eq. (3) and
Eq. (4)), where � ∈ R

ni+nj is an estimate of the vector of Lagrange
multipliers, � > 0 is the penalty parameter and ‖·‖ is the Euclidean
norm.

L(x, �, �) = f (x) + C(x)T � +
(

�

2

)
·
∥∥C(x)

∥∥2
(3)

C(x) = {ci(x)} ∪ {cj(x) − zj} (4)

Eq. (2) is reformulated to Eq. (5) by means of Eq. (3). The problem
stated in Eq. (5) becomes box-constrained because the sole explicit
constraints are the variable bounds, while the rest of the constraints
are embedded in the Augmented Lagrangian.⎧⎪⎨
⎪⎩

minxL(x, �,  �)

s.t. li ≤ xi ≤ ui

zj ≥ 0

(5)

This change makes it easier to compute the projections onto
the feasible region; thus, the general algorithmic performance is
improved. This property represents a great advantage for a low-cost
algorithm, like the spectral projected gradient method. By virtue of
Eq. (5), we shall henceforth refer to the Lagrangian as the objective
function of the optimization problem.
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