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a  b  s  t  r  a  c  t

Uncertainty  quantification  plays  a  significant  role  in  establishing  reliability  of mathematical  models,
while  applying  to process  optimization  or technology  feasibility  studies.  Uncertainties,  in general,  could
occur  either  in  mathematical  model  or in model  parameters.  In this  work,  process  of  CO2 adsorption  on
amine  sorbents,  which  are  loaded  in hollow  fibers  is studied  to quantify  the  impact  of  uncertainties  in the
adsorption  isotherm  parameters  on the model  prediction.  The  process  design  variable  that  is  most  closely
related  to  the  process  economics  is the CO2 sorption  capacity,  whose  uncertainty  is investigated.  We  apply
Bayesian  analysis  and determine  a utility  function  surface  corresponding  to  the  value  of  information
gained  by  the  respective  experimental  design  point.  It is demonstrated  that  performing  an  experiment  at
a condition  with  a  higher  utility  has  a higher  reduction  of  design  variable  prediction  uncertainty  compared
to  choosing  a design  point  at a lower  utility.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Models play a key role in the design of chemical processes.
Mathematical models, although meant to represent and predict
system behavior accurately, are compromised due to uncertain-
ties of our knowledge of the system. Uncertainty in model, and
hence its predictions, arises either due to uncertainties associated
with the model representation itself, causing model uncertainty or
due to errors in the parameter values used in the model, leading to
parametric uncertainty. Model uncertainty occurs primarily because
of inaccurate understanding of the underlying system, or due to
over-simplifying assumptions used in the model while represent-
ing the system behavior. Parametric uncertainty, on the other hand,
occurs due to errors associated with the measurement variables or
because of the sparsity of the available measurements used to esti-
mate the model parameters. While it is theoretically possible to
reduce or even completely remove the uncertainties in the model
parameters, it can often be very challenging due to the inherent
physical limitations associated with the measurement devices or
the sheer complexity of performing an experiment to collect data.
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Nevertheless, it is important to quantify the uncertainties and their
impact on the model predictions, in order to use the model reliably
in process design.

Uncertainty quantification (UQ) has grown in importance across
many fields including chemical engineering (Duran and White,
1995; Coleman and Block, 2006; Hermanto et al., 2008; Najm
et al., 2009; Angelikopoulos et al., 2012). There have been a num-
ber of methods developed to characterize, quantify, or propagate
uncertainties including probabilistic methods, such as classical or
frequentist inference and Bayesian inference (Omlin and Reichert,
1999), sampling methods such as Monte Carlo (Basil and Jamieson,
1998) and bootstrapping (Efron, 1979), and response surface meth-
ods (intrusive methods) such as polynomial chaos expansions (Xiu
and Karniadakis, 2003) and Kriging approach (Yuan et al., 2008).
Among these different methods, Bayesian inference offers several
advantages over other methods as it does not require modification
to the model and provides a comprehensive treatment of paramet-
ric and model uncertainties without any simplifying assumptions
about their distributions (Omlin and Reichert, 1999; Alfaro et al.,
2003). However, applying Bayesian inference and propagating the
uncertainties using Monte Carlo sampling of the posterior para-
metric distribution or using polynomial chaos expansions leads to
prohibitively expensive computation when applied to large mod-
els, as is commonly observed with any physio-chemical process,
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Nomenclature

A, B constants defining the temperature dependency of
n

b Toth isotherm affinity constant [Pa−1]
b0 parameter defining the temperature dependency of

b [Pa−1]
Cbr limiting CO2 gas phase concentration at break-

through [mol/m3]
Cg CO2 gas phase concentration [mol/m3]
Cp specific heat capacity [J/kg K]
ed multiplicative factor defining the expansion rate of

proposal covariance matrix
hg flue gas convective heat transfer coefficient

[W/m2 K]
ht convective heat transfer coefficient between ther-

mocouple and module [W/m2 K]
L length [m]
n Toth isotherm heterogeneity parameter
N  normal distribution
P pressure [Pa]
qavg average CO2 loading in sorbent [mmol/g fiber]
qbulk CO2 loading in sorbent within the bulk PEI sites

[mmol/g fiber]
qbr CO2 loading in sorbent at breakthrough time tbr

[mmol/g fiber]
qeq CO2 loading at equilibrium [mmol/g fiber]
qm maximum possible CO2 loading at a given temper-

ature [mmol/g fiber]
qm0 maximum possible CO2 loading at the reference

temperature T0 [mmol/g fiber]
qsurface CO2 loading in sorbent within the surface PEI sites

[mmol/g fiber]
ro outer fiber radius [m]
ri inner fiber radius [m]
rfs radius of free space surrounding fiber [m]
sd multiplicative factor defining the shrinking rate of

proposal covariance matrix
T temperature [K]
ug bulk gas velocity [m/s]
U(d), U′(d) utility function describing the information gain of

experiment at d
U overall heat transfer coefficient of the module

[W/m2 K]
U uniform distribution
1/Kov,surface overall mass transfer resistance for CO2 adsorp-

tion on surface PEI sites [s]
1/Kov,bulk overall mass transfer resistance for CO2 adsorption

on bulk PEI sites [s]

Greek symbols
˛  parameter defining the rate of increase of mass

transfer resistance [g fiber/mmol]
� porosity [–]
� sensitivity parameter mean/distribution mean [–]
� standard deviation of sensitivity/distribution [–]
� set of adsorption isotherm parameters and hyper-

parameter [–]
�H0 isosteric heat of adsorption at zero loading

[kJ/g mol]
�Havg average heat of adsorption [kJ/g mol]

Subscripts
f fiber
g gas
t thermocouple

involving coupled partial differential equations. In effect, most of
the studies on quantifying uncertainties in the field of chemical
engineering have been restricted to characterizing uncertainties
(parametric inference problems), most of which involves simple
batch system models such as kinetic models (Najm et al., 2009;
Hsu et al., 2009; Albrecht, 2013), adsorption isotherms (Anagu
et al., 2012; Mebane et al., 2013), fed batch fermentation reactors
(Coleman and Block, 2006) and microbiology models (Pouillot et al.,
2003), and only few studies have been performed on larger mod-
els such as packed bed adsorbers (Duran and White, 1995; CSTRs
(Chen et al., 2004) and crystallization processes (Hermanto et al.,
2008).

While it is desirable to reduce the uncertainties associated with
the model and parameters, it may  often be difficult and expensive
to perform experiments and collect data that are required to reduce
the uncertainties. Under such scenarios, it is advantageous to
determine the conditions at which performing experiments would
provide maximum information gain. Such a strategy is termed as
optimal experimental design (OED). By optimally designing the
experiments, one can gain maximum amount of information about
the system using least number of experiments.

Model-based design of experimental methods using the Fisher
Information Matrix (FIM) (Atkinson et al., 2007) have been well
studied for models with linear parametric dependence, employing
the well known optimal design conditions termed as alphabeti-
cal optimality criteria,  which are evaluated as functionals of FIM
(Franceschini and Macchietto, 2008). In case of models with nonlin-
ear parametric dependence, a number of simplifying assumptions
are made to employ FIM based optimal experimental design,
including linearization of the model response and Gaussian approx-
imation of the parametric distributions (Chu and Hahn, 2007).
Bayesian experimental design, on the other hand, does not require,
in general (Chaloner and Verdinelli, 1995) any simplifying assump-
tions on the parametric distribution or the model linearization.
Measure of the information gain using Bayesian analysis, is rep-
resented by an objective function called the utility function, which
includes an optimality criteria that is maximised to determine the
optimal design condition (Lindley, 1972). A detailed review on the
Bayesian experimental design methods and the variations of the
utility function can be found in Chaloner and Verdinelli (1995).

Bayesian experimental design was first introduced by Lindley
(1972), where Shannon information gain is used from posterior to
prior distribution for the experimental design; followed by several
others using variations of optimality criteria (Brooks, 1977; Shewry
and Wynn, 1987). The computational expense of evaluating the
utility function has been a major challenge in deploying Bayesian
design to determine the optimal experiment as most of the real
world models are complex and cannot be analytically evaluated
(Ryan, 2003; Terejanu et al., 2012). In effect, most of the reported
work on Bayesian experimental design have been using linear
models and in the few studies having non-linear models, approx-
imations of the utility function or Gaussian approximations of the
posterior distributions are used (Russi et al., 2008; Mosbach et al.,
2012). In that context, Muller and Parmigiani (1995) suggested
using a Monte Carlo estimator and simulation based optimal design
by fitting the Monte Carlo samples of utility surface. However,
they concluded that the evaluation becomes computationally pro-
hibitive for large dimensions of design parameters. There have been
very limited studies on Bayesian experimental design in the chem-
ical engineering literature. In recent work, Solonen et al. (2012)
applied the simulation based optimal design for a CSTR model using
variance of predictions as the utility function. They sidestepped
the computational complexity of posterior distribution evaluation
after every added experiment, by weighing the parameters with
the corresponding likelihood of the new measurements. Even with
such methodology, the likelihood evaluation could turn out be
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