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a  b  s  t  r  a  c  t

Input  variable  scaling  is one  of the  most important  steps  in  statistical  modeling.  However,  it has  not  been
actively  investigated,  and autoscaling  is  mostly  used.  This  paper  proposes  two  input  variable  scaling
methods  for improving  the  accuracy  of  soft  sensors.  One  method  statistically  derives  the  input  variable
scaling  factors;  the  other  one  uses  spectroscopic  data  of  a material  whose  content  is estimated  by  the  soft
sensor. The  proposed  methods  can  determine  the scales  of the  input  variables  based  on  their  importance
in  output  estimation.  Thus,  it can  reduce  the negative  effects  of input  variables  which  are not  related  to an
output  variable.  The  effectiveness  of the  proposed  methods  was  confirmed  through  a  numerical  example
and  industrial  applications  to a pharmaceutical  and  a distillation  processes.  In  the  industrial  applications,
the  proposed  methods  improved  the  estimation  accuracy  by  up to 63%  compared  to  conventional  methods
such as  autoscaling  with  input  variable  selection.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the process industry, one of the most important tasks is to
ensure quality and to reduce operating cost. However, real-time
measurement of product quality is not always available due to
unacceptable measurement equipment cost and long measure-
ment time. To solve this problem, research on soft sensors, which
estimate product quality using real-time measurements, has been
actively conducted (Kadlec et al., 2009; Kano and Fujiwara, 2013;
Oh et al., 2013; Khatibisepehr et al., 2014). According to a question-
naire survey (Kano and Fujiwara, 2013), in 2009 soft sensors were
working in over 400 distillation and chemical reaction processes
at 15 companies in Japan. In addition, soft sensors have recently
attracted much interest in the pharmaceutical industry to achieve
a new quality assurance system composed of Quality by Design
(QbD) and process analytical technology (PAT) (Roggo et al., 2007;
Rajalahti and Kvalheim, 2011). Building a soft sensor requires many
steps such as data acquisition, abnormal data detection, data pre-
processing, input variable selection, model building, and model
validation. Although input variable scaling, a data preprocessing
method in which the values of each input variable are multiplied by
the scaling factor of the input variable, can have significant effect
on the estimation performance of soft sensors, research on input
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variable scaling has not been actively conducted. Hence, this paper
focuses on input variable scaling, which is mathematically repre-
sented as

X̃ = X� (1)

� = diag(�1, �2, . . .,  �M) (2)

where X ∈ RN×M is the raw input variable matrix, in which the
input variables are not scaled, X̃ ∈ RN×M is the scaled input vari-
able matrix, �m is a nonnegative input variable scaling factor for
the m-th input variable, N is the number of samples, and M is the
number of input variables. It is assumed that the mean of each input
variable is zero without loss of generality. The input variable scal-
ing affects important statistical properties of the data such as the
distance between samples and the covariance of samples. It also
affects the estimation result. For example, the m-th input variable
xm cannot have any influence on output estimation when �m is zero.
Thus, � ∈ RM×M should be carefully selected to create accurate soft
sensors.

In past research, autoscaling was  commonly used (Engel et al.,
2013; van den Berg et al., 2006; Todeschini et al., 1999). In addi-
tion, Pareto scaling, level scaling, Poisson scaling, range scaling, and
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VAST scaling (Keun et al., 2003) have been considered. The scaling
factors in these methods are defined as

1
�m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m (autoscaling)
√

�m (pareto scaling)

xm (level scaling)√
xm (poisson scaling)

xm,max − xm,min (range scaling)

�2
m

xm
(VAST scaling)

(3)

where �m is the standard deviation of xm, xm is the mean value of
xm, xm,max is the maximum value of xm, and xm,min is the minimum
value of xm. These methods define the input variable scaling factors
based only on the information from the input variables such as their
standard deviations and means. Hence, input variable scaling fac-
tors can be large for the input variables which are irrelevant to the
output variable when these method are used, and the estimation
performance of soft sensors may  deteriorate. Some of the irrelevant
input variables might be removed by using input variable selection
methods such as the stepwise method (Hocking, 1976), variable
influence on projection (VIP) (Wold et al., 2001) and least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani, 1996).
It is, however, very difficult to remove all irrelevant input vari-
ables without removing any relevant input variables, and some
irrelevant input variables generally remain after input variable
selection. Thus, it is needed to determine the input variable scal-
ing factors according to the importance of the input variables in
output estimation. To take into account the importance of input
variables in the output estimation, Kuzmanovski et al. (2009) used
the genetic algorithm to optimize the input variable scaling fac-
tor. However, the computational burden of the genetic algorithm
is considerable. Martens et al. (2003) proposed to use the magni-
tude of the undesired signals in measurements to determine the
input variable scaling factors. But, this method is applicable only to
spectroscopic data. To solve the above-mentioned problems, two
input variable scaling methods are proposed. The proposed meth-
ods can determine the input variable scaling factors based on the
importance of input variables in output estimation with short com-
putational time. One of the proposed methods can be applied to any
data.

2. Input variable scaling methods

Conventional input variable scaling methods such as autoscal-
ing and range scaling do not determine the input variable scaling
factors based on the importance of individual input variables in
output estimation. These methods, therefore, can cause overfitting
especially when the number of samples is small. One can reduce
the effect of irrelevant input variables on output estimation by
assigning small input variable scaling factors to those input vari-
ables. On the other hand, large input variable scaling factors should
be assigned to input variables which have a large influence on an
output variable.

We propose two methods to evaluate the influence of each input
variable on an output variable and assign appropriate input variable
scaling factors to input variables. The first one statistically derives
the input variable scaling factors, while the second one uses spec-
troscopic data of a material whose content is estimated by a soft
sensor.

2.1. Proposed method 1: data-based approach

Proposed method 1 statistically calculates the input variable
scaling factor in an iterative manner. In this paper, the standardized
regression coefficients of input variables in a partial least squares
(PLS) model and the VIP scores are used as the input variable scal-
ing factors, since they correlate to the importance of each input
variable. The standardized regression coefficient is defined as the
product of the regression coefficient  ̌ and the standard deviation
� of an input variable. The algorithm of proposed method 1 is as
follows:

1. Prepare the raw input variable matrix X and an output variable
vector y ∈ RN .

2. Set the iteration number i to 1 and the maximum iteration num-
ber to I.

3. Calculate the input variable scaling factor matrix �0 = diag(�10,
�20, . . .,  �M0) where �m0 is 1/�m0. Here, �m0 is the standard devi-
ation of the m-th input variable (m = 1, 2, . . .,  M) in the raw input
variable matrix X .

4. Let the scaled input matrix X̃0 = X�0.
5. Calculate the new input variable scaling factor matrix

�i = diag(�1i, �2i, . . ., �Mi) (4)

�mi =
{

|ˇmi|�mi (standardized regression coefficient)

VIPmi (VIP score)
(5)

for every m.  Here, ˇmi, �mi and VIPmi denote the regression coef-
ficient, the standard deviation and VIP score of the m-th input
variable obtained using the scaled input matrix X̃ i−1 and the
output variable vector y, respectively.

6. Calculate the new scaled input matrix X̃ i = X�i.
7. Finish the calculation if i = I. Otherwise set i = i + 1 and go to step

5.

Steps 3 and 4 in the above algorithm correspond to autoscaling. In
step 5, the input variable scaling factors are updated, and the input
variable matrix is updated in step 6. The convergence of this method
is not guaranteed in all cases. However, the values of regression
coefficients converged in most cases at least in the case studies
conducted in this paper as shown in the next section.

The regression coefficient vector obtained by PLS is represented
as

ˇPLS = W (PTW )
−1

q (6)

W = [w1, w2, . . .,  wR] (7)

P = [p1, p2, . . .,  pR] (8)

q = [q1, q2, . . .,  qR]T (9)

where wr , pr and qr are the weight vector, the loading vector of
the input variable and the regression coefficient for the r-th latent
variable (Kim et al., 2013).

The VIP score (Wold et al., 2001) of the m-th variable is defined
as

VIPm =

√√√√M
∑R

r=1

[
(q2

r tT
r tr)

(
wmr
‖wr‖

)2
]

∑R
r=1(q2

r tT
r tr)

(10)

where wmr is the m-th component of the r-th weight vector wr . tr

is the r-th latent variable score.

2.2. Proposed method 2: knowledge-based approach

In the pharmaceutical and food industries, soft sensors are
often used to estimate the content of an important material
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