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a  b  s  t  r  a  c  t

Chance  constraints  are  useful  for modeling  solution  reliability  in  optimization  under  uncertainty.  In
general,  solving  chance  constrained  optimization  problems  is challenging  and  the  existing  methods  for
solving  a  chance  constrained  optimization  problem  largely  rely  on  solving  an  approximation  problem.
Among  the  various  approximation  methods,  robust  optimization  can provide  safe  and  tractable  ana-
lytical  approximation.  In  this  paper,  we  address  the question  of what  is the  optimal  (least  conservative)
robust  optimization  approximation  for  the  chance  constrained  optimization  problems.  A  novel algorithm
is  proposed  to find  the  smallest  possible  uncertainty  set size  that  leads  to the  optimal  robust  optimiza-
tion  approximation.  The  proposed  method  first  identifies  the  maximum  set  size that  leads  to  feasible
robust  optimization  problems  and  then  identifies  the best  set  size  that  leads  to  the  desired  probability
of  constraint  satisfaction.  Effectiveness  of  the  proposed  algorithm  is  demonstrated  through  a portfolio
optimization  problem,  a production  planning  and  a process  scheduling  problem.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Chance constraint (also called probabilistic constraint) is an
important tool for modeling reliability on decision making in the
presence of uncertainty. A general chance constrained optimization
problem takes the following form:

max
x∈X

f (x)

s.t. Pr {h(x, �) ≤ 0} ≥ 1 − ˛
(1)

where x represents the decision variables, � denotes the uncertain
parameters,  ̨ is a reliability parameter representing the allowed
constraint violation level (0 <  ̨ < 1). The chance constraint Pr {h(x,
�) ≤ 0} ≥1 −  ̨ enforces that the constraint h(x, �) ≤ 0 is satisfied with
probability 1 −  ̨ at least (or violated with probability  ̨ at most).

The chance constrained optimization problem was  introduced
in the work of Charnes et al. (1958) and an extensive review can
be found in Prékopa (1995). There are many challenging aspects
of solving chance constrained optimization problem. Except for
a few specific probability distributions (e.g., normal distribution),
it is difficult to formulate an equivalent deterministic constraint
for the chance constraint. Furthermore, checking the feasibil-
ity of a chance constraint is not easy and the feasible region
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of chance constrained optimization problem is often nonconvex.
To avoid the above difficulties, existing methods for solving a
chance constrained optimization problem largely rely on solv-
ing an approximation problem. Generally, there are two  types of
approximation methods used in literature to approximate a chance
constraint: sampling based approach and analytical approximation
approach.

For the sampling based approach, random samples are drawn
from the probability distribution of the uncertain parameters and
they are further used to approximate the chance constraint. Sce-
nario approximation and sample average approximation are two
different ways of sampling based methods. For scenario approxi-
mation, the idea is to generate a set of samples �1, �2, . . .,  �K of the
random parameters � and approximate the chance constraint with
a set of constraints h(x, �k) ≤ 0, k = 1, . . .,  K. The scenario approxi-
mation itself is random and its solution may  not satisfy the chance
constraint. Research contributions in this direction have been made
by Calafiore and Campi (2006), Nemirovski and Shapiro (2006b),
Pagnoncelli et al. (2009), etc. For sampling average approximation,
it uses an empirical distribution associated with random samples
to replace the actual distribution, which is further used to evaluate
the chance constraint. This kind of method for chance constrained
problems has been investigated by Luedtke and Ahmed (2008),
Atlason et al. (2008), Pagnoncelli et al. (2009), etc.

Analytical approximation approach transforms the chance con-
straint into a deterministic counterpart constraint. Compared
to the scenario based approximation, analytical approximation
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provides safe approximation and the size of the model is
independent of the required solution reliability. Determinis-
tic approximation of chance constraints can be derived from
Chebyshev’s inequality (Chebyshev, 1867), Bernstein inequality
(Bernstein, 1937), Hoeffding’s inequality (Hoeffding, 1963), etc.
Nemirovski and Shapiro (2006a) investigated convex approxima-
tions of chance constraints. Hong et al. (2011) proposed convex
approximations for joint chance constrained programs.

Robust optimization (RO) provides another way for analyt-
ically approximating a chance constraint. Robust optimization
often requires only a mild assumption on probability distribu-
tions, and it provides a tractable approach to obtain a solution
that remains feasible in the chance constrained problem. Hence,
robust optimization has been widely used to construct a safe
approximation of chance constraints. One of the earliest papers
on robust counterpart optimization is the work of Soyster (1973).
The framework of robust counterpart optimization is also stud-
ied by Ben-Tal and Nemirovski (1999, 2000), El Ghaoui and
Lebret (1997), El Ghaoui et al. (1998), and Bertsimas and Sim
(2004). Ben-Tal and Nemirovski (2000) considered the robust
optimization for linear programs under some certain situa-
tions, and Lin et al. (2004) and Janak et al. (2007) extended
it to mixed integer linear optimization problem. An exten-
sive study is conducted by Li et al. (2011). They studied the
robust counterpart optimization techniques for linear optimiza-
tion and mixed integer linear optimization problems. The a
priori and a posteriori probability bounds on constraint viola-
tion/satisfaction were studied by Li et al. (2012), which are further
used to improve the solution quality of robust optimization based
approximation within an iterative framework (Li and Floudas,
2014).

Robust optimization can provide a safe approximation to the
chance constrained problem. However, the quality of the approx-
imation has not received attention in existing literature. A safe
approximation can be unnecessarily conservative and lead to a
solution that is of poor performance in practice. In this paper,
we study the question what is the best safe approximation to
an individual chance constraint with robust optimization method.
We analyzed the relationship between the size of the uncertainty
set and the solution reliability of robust optimization problems.
From a motivating example, we discovered the fact the reliabil-
ity of a robust solution (probability of constraint satisfaction) is
not necessarily a monotonic function of the uncertainty set’s size,
which is contrary to the general intuitive that people tend to have.
To address the optimal approximation problem, we proposed a
two-step algorithm. The first step is to identify the maximum
size that makes the robust optimization problem feasible. The
second step is to identify the optimal (smallest) set size that
will satisfy the desired solution reliability. We  demonstrate the
algorithm through a chance constrained portfolio optimization
problem, a production planning and a process scheduling prob-
lem.

The rest of the paper is organized as follows. In Section 2,
the basic robust optimization theory is presented, including the
uncertainty set induced robust counterpart optimization constraint
and the a priori probability upper bound for constraint viola-
tion. In Section 3, the robust optimization approximation method
for chance constraint optimization problem is introduced and
improvement methods are presented based on the a posteriori
probability bound. In Section 4, a novel method for identifying
the optimal set size for robust optimization approximation is
proposed. Methods for quantifying the reliability and optimal-
ity of a solution to chance constrained optimization problem are
introduced in Section 5. The proposed methods are investigated
through case studies in Section 6 and the paper is concluded in
Section 7.

2. Robust optimization

In this paper, linear constraint under uncertainty is investigated.
Consider the following optimization problem with parameter
uncertainty:

max
x∈X

cx

s.t.
∑

j

ãjxj ≤ b. (2)

where the constraint coefficients ãj are subject to uncertainty.
Define the uncertainty as ãj = aj + �jâj, ∀j ∈ J, where aj represent
the nominal value of the parameters, âj represent positive constant
perturbations, �j represent independent random variables which
are subject to uncertainty and J represents the index subset that
contains the variables whose coefficients are subject to uncertainty.
Constraint in (2) can be rewritten by grouping the deterministic
part and the uncertain part as follows:

∑
j

ajxj +
∑
j∈J

�jâjxj ≤ b. (3)

In the set induced robust optimization method, the aim is to
find solutions that remain feasible for any � in the given uncer-
tainty set U with size � so as to immunize against infeasibility. The
corresponding robust optimization problem is

max
x∈X

cx

s.t.
∑

j

ajxj + max
�∈U(�)

⎧⎨
⎩

∑
j∈J

�jâjxj

⎫⎬
⎭ ≤ b

(4)

The formulation of the robust counterpart optimization prob-
lem is connected with the selection of the uncertainty set U. Based
on the work of Li et al. (2011), different robust counterpart opti-
mization formulations can be developed depending on the type of
uncertainty set. For example, the box uncertainty set U∞ = { �

∣∣ |�j| ≤
�, ∀j ∈ J} induced robust counterpart optimization constraint is
given by:

∑
j

ajxj + �
∑
j∈J

âj|xj| ≤ b (5)

And the ellipsoidal uncertainty set U2 = { �
∣∣∑

j∈J

�2
j

≤ ˝2}

induced robust counterpart optimization constraint is:

∑
j

ajxj + ˝

√∑
j∈J

â2
j
x2

j
≤ b (6)

where � and  ̋ are the size of the box and ellipsoidal uncertainty
set, respectively.

For the same type of uncertainty set, as the set size increases,
the optimal objective of the robust optimization problem (4) will
decrease (for a maximizing objective) because the feasible region
of the robust optimization problem (4) becomes smaller. This is
shown in the following example.
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