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a  b  s  t  r  a  c  t

A  variety  of production  processes  in chemistry  and  biotechnology  are concerned  with  particles  dispersed
in an  environmental  phase.  The  particle  distribution  is mathematically  described  by  the solution  of  pop-
ulation  balance  equations  of  integro-differential  type.  We  are  concerned  with  the aggregation  process:  it
invokes  an  integral  term  that is  usually  numerically  expensive  to evaluate  and  often  dominates  the  total
simulation  cost.  We  will  expose  the  algorithmic  details  of an efficient  approach  based  on  a  separable
approximation  of  the  aggregation  kernel  and  a subsequent  fast  Fourier  transformation.  This approach
reduces  the  originally  quadratic  complexity  to an almost  optimal  complexity  O(n  log  n) in the dimen-
sion  of  the  approximation  space.  We  include  numerical  tests  illustrating  its application  to representative
aggregation  kernels  from  the  literature.  While  originally  developed  in the  context  of  a  discretization  with
piecewise  constant  functions,  we illustrate  how  these  ideas  can  be  applied  in the  setting  of  the  popular
sectional  methods.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A variety of production processes in chemistry and biotechnol-
ogy are concerned with particles dispersed in an environmental
phase. Examples are the crystallization and precipitation of phar-
maceutical materials, the synthesis of polymers, the formulation
of emulsions, the generation of nanoparticles by flame pyrolysis,
the growth of living cell populations in fermentation processes,
and the separation of fermentation broths by flocculation and sed-
imentation. In all these processes, the dispersed phase consists of
a population of particles which can be characterized by property
coordinates x, e.g. the particle size, the particle area, or the chem-
ical composition, to mention only a few. The state of the whole
particle population is quantified by a number density function f(x,
t) which describes the property distribution of the particles at given
time t Ramkrishna (2000). Due to growth, birth and death phenom-
ena the density function f varies dynamically with time. Neglecting
spatial variations, the dynamic evolution of f is governed by a
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population balance equation (PBE) which is a partial integro-
differential equation of the general form
∂f (x, t)

∂t
+ ∇x · (G f (x, t)) = Q (f ) = Qnuc(f ) + Qbreak(f ) + Qagg(f ), t  ∈ [0, T]. (1)

The second term of the left-hand side of (1) represents the
growth of particles at the rate G. On the right-hand side, Q summa-
rizes the birth and death terms of particles due to nucleation Qnuc,
breakage Qbreak and aggregation Qagg. Nucleation, i.e. the birth of
new particles in the continuous phase, is a local effect in the prop-
erty space, while breakage and aggregation are long range effects,
i.e. they describe the interaction of (mother and daughter) parti-
cles belonging to different parts of the property space. Neglecting
breakage at this point, the aggregation term can be expressed by
the following source (birth) and sink (death) integrals:

Qagg(f ) = Qsource(f ) − Qsink(f ) (2)

with

Qsource(f )(x, t) = 1
2

∫ x

0

�(x − y, y)f (x − y, t)f (y, t) dy, (3)

Qsink(f )(x, t) = f (x, t)

∫ 1−x

0

�(x, y)f (y, t) dy. (4)

where �(x, y) stands for the kernel function describing the rate
constant of aggregation in dependence on the properties of two
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aggregating particles, x and y. The source integral (3) is quadratic
with respect to f and is of convolution type. It describes the effect
that new particles are generated by the combination of smaller
ones, while the sink integral (4) quantifies the effect that particles
are consumed by aggregation with others. Note that we  assume
here that all particles have (non-dimensionalized) properties in the
interval (0, 1]. Consequently, a particle of size x can only aggregate
with particles up to the maximum size (1 − x).

Only for special expressions of the kernel function, in particu-
lar for k(x, y) = const ., analytical solutions of PBEs with aggregation
terms can be obtained, for example by application of Laplace
transformation. Thus, several groups have elaborated numerical
schemes for the evaluation of univariate aggregation integrals, i.e.
aggregation of particles characterized by one single property coor-
dinate x. The particle size (or mass/volume) was usually considered
as particle property.

One of the most popular numerical techniques, often denoted
as the sectional method, was introduced in Kumar and Ramkrishna
(1996a), Kumar and Ramkrishna (1996b). It is based on fixed or
moving pivotal points (or simply pivots) which concentrate the
particles in different intervals along x at a finite number of repre-
sentative points. Later, in Kumar et al. (2006), an improved sectional
method was established which assigns the particles within the
cells more precisely and thereby achieves higher accuracy and bet-
ter convergence. The same authors compared the cell averaging
technique also to the finite volume scheme developed in Filbert
and Laurencot (2004). It was concluded that the best choice of the
numerical technique depends on the priorities set by the applica-
tions, Kumar et al. (2009).

As the main alternative to the sectional approach, various
quadrature methods of moments (QMOM) were developed. A sys-
tematic comparison of these quadrature methods can be found
in Grosch et al. (2007). Marchisio et al. (2003) were among the
first who applied the QMOM approach for the numerical solu-
tion of aggregration-breakage processes. The QMOM overcomes
the problem of the standard method of moments which is appli-
cable to size-independent aggregation and breakage kernels only.
It is able to track with very small error all the moments involved
in the quadrature approximation, thereby solving the problem of
most of the sectional methods, which are able to preserve only two
moments of the particle size distribution (PSD). But the main disad-
vantage of using the QMOM is that the PSD is not directly accessible.

Hence, it is desirable to develop a numerical technique which
directly yields the PSD, in particular the aggregation integral terms,
at high precision and low computational costs. For this purpose,
Hackbusch (2006) has introduced an approach which combines a
separable approximation of the kernel function �(x, y) with the
fast Fourier transform for the arising convolution integrals. This
approach drastically reduces the evaluation cost of the most chal-
lenging integral term (3) in each time step to O(n log n) if the
interval is divided into n subintervals. The aim of the present con-
tribution is to expose the algorithmic details of the technique of
Hackbusch (2006) for equidistant grids and to illustrate its appli-
cation to several aggregation kernels taken from the literature.

The remainder of this paper is organized as follows: In Section 2,
we present the separable kernel approximation. Section 3 reviews
the fast evaluation of the aggregation source integral through mul-
tiple use of fast Fourier transformations and presents it explicitly
in algorithmic form. While originally developed for a discretiza-
tion with piecewise constant functions, it is shown how the same
approach can be applied in the setting of sectional methods, leading
to highly efficient algorithms. In Section 4, we provide numerical
results illustrating the performance of the proposed algorithms
for different kernel functions. The entire work is focused on the
univariate aggregation problem. Subsequent investigations will be
concerned with the bivariate case.

2. Kernel functions and separable approximations

The aggregation source and sink integrals (3), (4) include a ker-
nel function �(x, y) which specifies the rate constant at which
particles of mass x and y aggregate. In this paper, we  will consider
the following representative aggregation kernels taken from the
literature Aldous (1999), Bramley et al. (1996) and illustrated for
(x, y) ∈ [0, 1]2 in Fig. 1:

Kernel Comment

�B(x, y) : = (x1/3 + y1/3) · (x−1/3 + y−1/3) Brownian motion (continuum)

�S(x, y) := (x1/3 + y1/3)
7/3

shear (non-linear velocity profile)

�G(x, y) := (x1/3 + y1/3)
2 · |x2/3 − y2/3| inertia and gravitational settling

�K(x, y) := (x1/3 + y1/3)
2 · (xy)1/2(x + y)−3/2 based on kinetic theory

The efficient evaluation of the aggregation source and sink inte-
grals will be based on a separable approximation of the kernel. A
function �(x, y) is called separable with separation rank k if it can
be expressed in the form

�(x, y) =
k∑
�=1

˛�(x)ˇ�(y)

where ˛� and ˇ� are some suitable functions, which in our con-
text need to be integrable. The length k of the sum is called the
separation rank.

Among the four aggregation kernels presented above, only the
Brownian motion kernel �B is separable. It has separation rank 3 in
view of

�B(x, y) = 2 + x1/3y−1/3 + x−1/3y1/3.

The shear kernel �S and kinetic kernel �K are not separable because
of the rational (non-integer) exponents of sums of functions in x
and y, and the gravitational kernel is not separable because of the
factor involving the absolute value of sums of functions in x and y.
For these remaining three kernel functions, one may  approximate
�(x, y) either by a global separable rank-k approximation

�(x, y) ≈
k∑
�=1

˛�(x)ˇ�(y), (5)

or, if necessary, locally by

�(x, y) ≈
kij∑
�=1

˛ij�(x)ˇij�(y) for (x, y) ∈ Ii × Ij (6)

with subintervals Ii, Ij ⊂ [0, 1]. The global approach (5) will turn out
to be suitable for the shear kernel �S as well as for the kinetic ker-
nel �K. The gravitational kernel, however, requires locally different
separable approximations (6).

We will provide details on the construction of separable approx-
imations for the three kernels of interest in Section 4 on numerical
results. In general, there exist several analytic approaches in
the literature to derive such separable approximations, including
(Chebyshev) interpolation, sinc approximation Hackbusch (2009b)
or approximation by exponential sums. Alternatively, a separable
approximation could also be computed on the discrete side. This
approach would require the computation of a low rank (global
approach) or a blockwise low rank (local approach) approximation
to the discrete kernel matrix K = (�ij) ∈ R

n×n where �ij : = �(i/n, j/n).
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