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a  b  s  t  r  a  c  t

We  propose  an  approximate  polynomial  method  of  moments  for a class  of  first-order  linear  PDEs  (par-
tial  differential  equations)  of  hyperbolic  type,  involving  a filtering  term  with  applications  to  population
balance  systems  with  fines  removal  terms.  The  resulting  closed  system  of ODEs  (ordinary  differential
equations)  represents  an extension  to  a recently  published  method  of  moments  which  utilizes  least-
square  approximations  of  factors  of  the  PDE  over  orthogonal  polynomial  bases.  An  extensive  numerical
analysis  has  been  carried  out for proof-of-concept  purposes.  The  proposed  modeling  scheme  is generally
of  interest  for  control  and  optimization  of  processes  with  distributed  parameters.
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1. Introduction

A variety of methods and numerical integration schemes for
first-order hyperbolic partial differential equations (PDEs) of the
form:

∂f
∂t

+ ∂
∂x

(G(x, t)f (x, t)) + h(x)f (x, t) = B(t)ı(x), (1)

and extensions thereof beyond advection and birth/death
phenomena are spread across the engineering and applied
mathematics literature. Such schemes include the method of char-
acteristics (Kumar and Ramkrishna, 1997; Févotte and Févotte,
2010), quadrature method of moments (McGraw, 1997; Qamar
et al., 2006; Grosch et al., 2007; Aamir et al., 2009; Marchisio
and Fox, 2005), method of weighted residuals or orthogonal col-
location (Singh and Ramkrishna, 1977; Rawlings et al., 1992; Chiu
and Christofides, 1999), the Monte Carlo simulation (Smith and
Matsoukas, 1998), the finite difference schemes/discrete popula-
tion balances (Kumar and Ramkrishna, 1996), the high-resolution
finite volume methods (Koren, 1993; Gunawan et al., 2004),
schemes based on the method of characteristics (see, e.g., Kumar
and Ramkrishna, 1997; Aamir et al., 2009), etc. A main impe-
tus of the majority of these contributions has been enhancement
of efficiency, accuracy and robustness of integration schemes for
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specific problem classes. New schemes or modifications thereof
continue to develop as new applications and resulting numeri-
cal challenges arise in population balance systems. In a series of
our papers we  focused on the structural properties of the approxi-
mating models based on systems of ordinary differential equations
(ODEs) which amount to various methods of moments. Our  pro-
posed scheme shall though not address the general structure of
a population balance system, including aggregation and breakage
kernels. Various numerical schemes, mainly based on the idea of
the Gaussian quadrature have been developed for this purpose,
but most of them necessarily need to dispense with a pure ODE
structure. Our main concern is somehow opposite to this, as we
focus on designing ODE models for process systems described by
the PDE Eq. (1). Our approach is useful in the context of trajec-
tory planning and optimal control in batch crystallization (see, e.g.,
Bajcinca, 2013), real-time model predictive control of population
balances (Shi et al., 2005, 2006), robust control of uncertain popula-
tion balance systems based on a reduced-order modeling approach
(Chiu and Christofides, 2000), particle shape manipulation in mul-
tivariate crystallization (Patience and Rawlings, 2001; Lovette et al.,
2008), etc.

In a previous work, we  developed a variety of polynomial
approximation methods for designing ODE models for the sub-
class of systems Eq. (1) with h(x) ≡ 0 (Bajcinca et al., 2011, 2014). A
utilization thereof in the context of optimal control of batch crystal-
lization for uni- and multivariate PDEs has been done in (Bajcinca,
2013) and in some related references therein. In the present paper,
we focus on the extension of the general method of moments that
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Table  1
Nomenclature

Coordinates
Time t
Spatial (i.e. internal) coordinate x
Transformed space coordinates �
Displacement in � �

Process variables
Density function f, f̃
Initial density f0, f̃0
Birth rate B
Growth rate G
Size-independent growth rate factor G0

Size-dependent growth rate factor �(x)
Filtering or removal factor h(x)
Net volume referring to f VC

Monomial moments �i

Polynomial moments �i

was recently proposed in (Bajcinca et al., 2014) to the class of
PDEs of the form Eq. (1) with a filtering term h(x)f(x, t) introduced
therein. Such models are useful, for instance, in batch crystalliza-
tion involving dissolution of small crystal particles (referred to as
fines removal or dissolution) or for design of efficient downstream
processes by means of filtration. It turns out that in contrast to
the case with the term �(x), more precisely, �(�), in a transformed
�-domain introduced in Section 2, application of the least-square
approximation techniques – as proposed in (Bajcinca et al., 2014) –
directly into the factor h(x), i.e., its corresponding h(�), leads nec-
essarily to an open finite order ODE structure. To circuimvent this
difficulty, in this work, we suggest the approximation of the prod-
ucts h(�)�i(�), i ∈ {0, . . .,  p}, instead, where {�k}pk=0 corresponds
to an underlying expansion basis of the orthogonal polynomials.
We show that such an approach leads to a closed ODE structure. It
turns out that thereby a trade-off between the structurally dimin-
ishing errors with increasing order p and the resulting numerical
round-off errors in the least-square fitting, as well as ODE inte-
gration, has to be made. This typically leads to ODE schemes of a
larger order than those in cases with h(x) ≡ 0 (see Bajcinca et al.,
2014). This matter has been confirmed here by extensive numeri-
cal simulations in diverse case studies, indicating that generally the
proposed method with the h-term introduced, may  produce more
fragile computational ODE schemes (primarily) with respect to the
numerical round-off errors.

The remainder of the article is organized as follows. In Section
2, we provide a preliminary analytical discussion and coordinate
transformation leading to a form of the PDE Eq. (1) which is more
suitable for the derivation of the method of moments in Section 3.
Least square approximation and related numerical techniques are
discussed in Section 4. The usability of our computational technique
is illustrated in various scenarios on batch crystallization processes
with kinetics involving size-dependent growth rate and fines dis-
solution in Section 6. Additionally, we invoke a numerical scheme
based on the method of characteristics and a moving grid in Section
5, which shall serve as the reference computational scheme. The
basic nomenclature and notation is given in Table 1.

2. Coordinate transformations and PDE models

In this work, we propose a generalized method of moments for
the population balance equation (PBE) of the form:

∂f
∂t

+ ∂
∂x

(G(x, t)f (x, t)) + h(x)f (x, t) = B(t)ı(x), (2a)

with given initial condition:

f (x, 0) = f0(x), x ∈ [0,  xmax], otherwisef (x, 0) = 0. (2b)

Here, f(x, t), G(x, t), B(t), h(x) and ı(x) represent the particle den-
sity function, the size-dependent growth rate, the birthrate, a fixed
filtering function in x, and the Dirac function, respectively. Further-
more, we  require the separability condition

G(x, t) = �(x)G0(t), (2c)

where �(x) and G0(t) are both strictly positive functions. In most
applications, including our case-study analysis in Section 6, the
function �(x) is assumed to be continuous, while the functions
G0 = G0(t) and B = B(t) are implicitly defined by

G0 = G0(u(t), �(t)), B = B(u(t), �(t)), (2d)

where u(t) is an external manipulating variable and �(t) refers to
appropriate moments of the density function f(x, t):

�i(t) =
∫ ∞

−∞
xif (x, t)dx, i = 0, 1, etc. (3)

Remark 1. It has been a common practice in the literature to
accept 0 rather than −∞ as the lower bound in the latter inte-
gration. This is indeed non-critical as we have f(x, ·) ≡0 for x < 0.
Yet, in light of the presence of the Dirac-term in Eq. (2a), the above
moment definition will prove technically easier when deriving our
approximate method of moments.

As already mentioned, in addition to the methodological inquis-
itiveness, there exists a physical motivation for considering the
effects of the term h(x)f(x, t) in Eq. (2a). In such applications, typi-
cally, the function h(x) reflects a filtering effect, typically, in some
interval x ∈ [0, xh], xh < xmax, see Section 6.

Remark 2 (Size-dependent growth factor �(x)). The problem class
Eq. (2) refers to a generalization of the problems investigated in
our previous work (e.g., Bajcinca et al., 2011), where we  studied
the effects of the size-dependent term factor �(x) in

∂f
∂t

+ G0(t)
∂
∂x

(�(x)f (x, t)) = B(t)ı(x). (4)

Therein, a coordinate transformation � = �(x) and the scaled density
function f̃ = f̃  (�, t) have been introduced as

d�
dx

:= 1
�(x)

, i.e., �(x) =
∫ x

0

d	
�(	)

, and (5a)

f̃ (�, t) := f (x(�), t)�(x(�)). (5b)

The function �(x) is monotonous, thus, its inverse x(�) is well-
defined. With x(0) = 0 and dx/d� = �(x), we have:

ı(x(�)) = ı(�)
�(0)

, �(0) /= 0. (5c)

Then, substitution of the conditions Eq. (5), transforms (2) (with
h(x) ≡ 0) into an equation with size-independent growth rate:

∂f̃
∂t

+ G0(t)
∂f̃
∂�

= B(t) ı(�). (6a)

The scaled density function f̃ is the new unknown function with
the initial density f̃0(�) defined by

f̃ (�, 0) = �(x(�)) f0(x(�)) =: f̃0(�). (6b)

Observe that in the latter derivation, we  tacitly used the identity
�(x)ı(x) ≡ �(0)ı(x).

Following the same idea, Eq. (2) can be transformed to

∂f̃
∂t

+ G0(t)
∂f̃
∂�

+ h(�)f̃ (�, t) = B(t) ı(�), (7)

where, here (and elsewhere), for convenience, we abuse the formal
notation by adopting h(�) : = h(x(�)).
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