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a  b  s  t  r  a  c  t

This paper  deals  with  the efficient  computation  of  solutions  of  robust  nonlinear  model  predictive  control
problems  that  are  formulated  using  multi-stage  stochastic  programming  via  the  generation  of  a  scenario
tree. Such  a formulation  makes  it possible  to consider  explicitly  the  concept  of  recourse,  which  is  inherent
to  any  receding  horizon  approach,  but it results  in  large-scale  optimization  problems.  One  possibility  to
solve  these  problems  in an efficient  manner  is to  decompose  the large-scale  optimization  problem  into
several  subproblems  that  are  iteratively  modified  and  repeatedly  solved  until  a  solution  to  the  original
problem  is  achieved.  In this  paper  we  review  the most  common  methods  used  for  such  decomposition
and  apply  them  to  solve  robust  nonlinear  model  predictive  control  problems  in  a distributed  fashion.  We
also  propose  a novel  method  to reduce  the  number  of iterations  of the coordination  algorithm  needed
for  the  decomposition  methods  to converge.  The  performance  of  the  different  approaches  is evaluated  in
extensive simulation  studies  of  two  nonlinear  case  studies.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The use of optimization for the control of chemical processes
is a standard technique in the process industry because it makes
it possible to take into account various process objectives, such
as economic ones, and calculate the best control actions subject
to constraints that arise from quality, safety or environmental
requirements (Engell, 2007). A family of the methods termed model
predictive control (MPC) approaches evolved in this respect.

In recent years, a significant amount of research has been
devoted to the use of economic cost functions within the frame-
work of nonlinear model predictive control (NMPC), see e.g.
Rawlings and Amrit (2009), Idris and Engell (2012), Prada et al.
(2008), Gopalakrishnan and Biegler (2013). The optimal operation
of a system according to an economic cost corresponds usually to
driving the system to its constraints. For this reason, plant model
mismatch or disturbances (which are always present in reality) can

∗ Corresponding author. Tel.: +34 600880519.
E-mail addresses: ruben@autom.uva.es (R. Martí),

sergio.lucia@bci.tu-dortmund.de (S. Lucia), dsarabia@ubu.es (D. Sarabia),
radoslav.paulen@bci.tu-dortmund.de (R. Paulen),
sebastian.engell@bci.tu-dortmund.de (S. Engell), prada@autom.uva.es (C. de Prada).

lead easily to constraint violations and the explicit consideration
of uncertainty in the design of the MPC  controller becomes very
important.

The first efforts in robust MPC  tried to address this problem
focusing on the so-called min-max MPC  (Campo and Morari, 1987).
This approach obtains a sequence of control inputs that minimizes
the cost of the worst-case realization of the uncertainty while sat-
isfying the constraints for all the cases of the uncertainty. Min-max
MPC  however does not take into account the fact that new infor-
mation will be available in the future and therefore the result may
be overly conservative and may  lead to infeasible optimization
problems, as illustrated in Scokaert and Mayne (1998). Different
methods such as the closed-loop (or feedback) min-max NMPC in
Lee and Yu (1997) and Mayne (2001), or tube-based MPC (Mayne
et al., 2005; Rawlings and Amrit, 2009; Rakovic et al., 2011) have
been proposed to overcome the limitations of open-loop min-max
MPC. However, most of the methods above cannot be applied to
realistic problems, because they result in prohibitive computa-
tional cost, or they cannot be easily designed for nonlinear systems
or because they are very conservative.

A different possibility is to consider the integration of the
stochastic programming paradigm (Birge, 1997; Shapiro, 2009)
into the framework of model predictive control. This idea has
been used for the linear MPC  case in Scokaert and Mayne (1998),
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Muñoz de la Peña et al. (2005), Bernardini and Bemporad (2009) as
well as to NMPC (Lucia et al., 2013a), denoted as multi-stage NMPC
which is a robust NMPC approach based on the assumption that
the uncertainty can be modeled by a scenario tree. The application
of multi-stage NMPC has recently provided very promising results
and it is the approach to robust NMPC followed in this work.

The main drawback of the approach is that the size of the result-
ing optimization problem grows exponentially with the length of
the prediction horizon, and with the number of uncertainties as
well as with the number of different values of each uncertainty
that is considered in the design of the scenario tree. For this reason,
an efficient solution of the resulting Nonlinear Programming (NLP)
problem is necessary to make it possible to solve such problems
in real time. The main goal of this paper is to analyze the different
possibilities to solve the multi-stage NMPC in an efficient way, both
in terms of computation time and memory requirements.

For this purpose, we take advantage of the fact that each sce-
nario in the scenario tree is an independent subproblem except
for the non-anticipativity (or causality) constraints which make
sure that the optimal inputs do not anticipate the realization of the
uncertainty in the present sampling instant since it is unknown.
We investigate different possibilities to relax these constraints and
to solve the individual optimization problems within a coordina-
tion algorithm that enforces satisfaction of the non-anticipativity
constraints upon its convergence.

We  present classical coordination algorithms in the framework
of economic multi-stage NMPC and propose a novel distributed
algorithm that uses sensitivity information to reduce the number
of iterations of the coordination algorithm needed to converge. The
different distributed multi-stage NMPC algorithms are analyzed via
extensive simulation studies of two industrial case studies, extend-
ing the results presented in Marti et al. (2015).

The remainder of the paper is organized as follows. Section 2
summarizes the concept of multi-stage NMPC. The different coor-
dination algorithms used in this work are presented in Section 3
and a possible modification to achieve convergence in less itera-
tions of the coordination algorithms is presented in Section 4. The
resulting distributed NMPC algorithms are evaluated in Section 5
using an industrial hydrodesulphurization example and in Section 6
using an industrial polymerization reactor. The paper is concluded
in Section 7.

2. Multi-stage NMPC

This section reviews the main concepts of the multi-stage NMPC
approach presented in Lucia et al. (2013a, 2014b).

In multi-stage NMPC, the model uncertainty is taken into
account by considering a tree of discrete scenarios for each pos-
sible value of the uncertainty as depicted in Fig. 1. The formulation
of a scenario tree makes it possible to take explicitly into account
that the future decisions can depend on the new information (mea-
surements) that will become available in the future. Thus the future
control inputs can be adapted according to the future realizations
of the uncertainty and the conservativeness of the approach is
reduced compared to other robust methods that search for a single
sequence of control inputs to satisfy the constraints for all the pos-
sible values of the uncertainty. Formulating the uncertain decision
process as a scenario tree is a well-known approach in the field of
multi-stage stochastic programming, which has been extensively
used in decision theory and finances (Shapiro, 2009). In the case
that the uncertainty is truly discrete-valued, this is the best solu-
tion possible for a given prediction horizon. Generally this is not
the case, and multi-stage NMPC is an approximation of the best
solution.
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Robust horizon = 2
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Fig. 1. Scenario tree representation of the uncertainty evolution for multi-stage
NMPC.

To formulate mathematically the multi-stage NMPC approach,
we consider a discrete-time nonlinear system:

xj
k+1 = f (xp(j)

k
, uj

k
, dr(j)

k
), (1a)

where each state vector xj
k+1 ∈ R

nx at stage k + 1 and position j

depends on the parent state (node) xp(j)
k

at stage k, the vector

of control inputs uj
k
∈ R

nu and the corresponding realization r of

the uncertainty dr(j)
k
∈ R

nd (e.g. in Fig. 1, x6
2 = f (x2

1, u6
1, d3

1)). The

uncertainty at the stage k is defined by dr(j)
k
∈ {d1

k, d2
k, . . .,  ds

k} for
s different possible combinations of values of the uncertainty. We
define the set of indices (j, k) in the scenario tree as I. Si denotes
the ith scenario defined as the path from the root node x0 to one
of the leaf nodes and it contains all the states xj

k
and control inputs

uj
k

that belong to the ith scenario.
A common way to build a scenario tree is to consider, as possible

branches, a combination of values among the extreme and nominal
values of all the uncertainties. For the general nonlinear case, it is
not guaranteed that this results in robust constraint satisfaction for
the values of the uncertainty that are not considered in the tree, but
it has been shown to give very good results in practice (Lucia et al.,
2012, 2013a, 2014a,b). If a rigorous guarantee for robust constraint
satisfaction of all the possible values of the uncertainty (including
those that are not in the tree) is required, the multi-stage approach
can be combined with reachability analysis as shown in Lucia et al.
(2014c).

Generating the scenario tree in a systematic way (considering
the extrema of the uncertainty space) makes the size of the result-
ing optimization problem to grow rapidly with increasing length
of prediction horizon Np and with increasing number of uncer-
tainties with resulting number of scenarios N = sNp nd . A possible
strategy to avoid the exponential growth of the scenario tree over
the prediction horizon is to consider that the uncertainty remains
constant after a certain stage (called robust horizon Nr) until the
end of prediction horizon (Fig. 1) which gives N = sNr nd .

The optimization problem that has to be solved at each sampling
instant can be written as:

min
xj

k+1
,uj

k
, ∀  (j,k)∈I

N∑
i=1

ωiJi(X i, U i) (2a)
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