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a  b  s  t  r  a  c  t

This paper focuses  on  the  analysis  of complex  (multi-loop)  energy-integrated  process  networks.  Sim-
ple  (single-loop)  energy-integrated  networks  (comprising  of  large  energy  recycle  or  throughput)  with
two-time  scale  dynamics  are  the  building  blocks  for  such  complex  networks.  The  modular  structure  of
these complex  networks  lends  them  to a graph  theoretic  analysis,  whereby  weak  and  strong  connections
between  process  units  arising  from  time  scale  separation  are  identified  from  structural  information.  Sub-
sequently,  a  graph-theoretic  framework  for  network  analysis  and  control  is developed,  and  connecting
links  are  built  to  an equivalent  analysis  using  singular  perturbations.  The  proposed  analysis  framework
is  illustrated  via  application  to a representative  complex  process  network.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Aggressive efforts in sustainability and improved energy effi-
ciency in the process industries have led to the development of
complex process designs with multiple energy integration loops.
While these integrated systems have demonstrated significant
economic benefits, they have had limited practical implemen-
tation owing to the difficulties in their operation and control.
Specifically, these integrated networks exhibit complex, nonlinear,
multi-time scale dynamics with strong interactions among process
units (Jacobsen, 1999; Kumar and Daoutidis, 2002; Jogwar et al.,
2009). These interactions limit the effectiveness of standard decen-
tralized controllers. Fully centralized controllers, though possible to
design, are impractical due to the large size of the plant model and
are often ill-conditioned showing strong sensitivity to modeling
errors (Larsson et al., 2003; Kiss et al., 2005; Kumar and Daoutidis,
2002).

Recently, network-level analysis approaches have been devel-
oped to address this problem in a systematic and generic manner.
These approaches include:

• Passivity-based control (Ydstie, 2002; Hudson and Bao, 2012;
Hioe et al., 2013; Dörfler et al., 2009) which involves determining
the passivity/dissipativity of a process unit using thermodynamic
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properties, and analyzing the stability properties of the network
based on the interconnections of these passive/dissipative com-
ponents.

• Plantwide control which involves taking a holistic approach in
terms of identifying control objectives, manipulated inputs and
selecting a control structure for a network. Though some of the
earlier contributions in this area were heuristics-based (Luyben
et al., 1997; Stephanopoulos and Ng, 2000), recent works (Zhu
et al., 2000; Skogestad, 2004) have added formalism to this
approach.

• Distributed control (Venkat et al., 2008; Rawlings and Stewart,
2008; Liu et al., 2009) which places itself between the
two  extremes – decentralized and fully centralized control
schemes. This approach involves designing controllers for sub-
systems (group of units) and allowing for information sharing
(and possibly control/optimization objectives) among these
controllers.

• Quasi-decentralized control (El-Farra et al., 2005; Sun and El-
Farra, 2008; Baldea et al., 2013) which incorporates a local control
system for each unit in a network along with a supervisory unit
at the network level, and these local systems communicate with
the supervisor as well as the other local systems through a shared
communication medium.

• Hierarchical control (Scattolini, 2009; Kumar and Daoutidis,
2002; Jogwar et al., 2009) which aims at decomposing the control
problem into different tiers, typically based on the corresponding
time scales. The control objectives at a unit level are addressed
by the lower tier whereas the objectives at the network level are
addressed by the top tier.
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In previous work (Jogwar et al., 2010), we have identified two
classes of energy-integrated networks, one characterized by the
presence of large energy recycle (Fig. 1a) and the other character-
ized by the presence of large energy throughput (Fig. 1b), which are
at the core of most energy-integrated networks. These networks
show two-time scale dynamics and naturally lend themselves to a
two-tiered control approach based on these time scales. Further-
more, we have shown that the underlying energy flow structure of a
complex energy-integrated network consists of interconnections of
these recycles and throughputs (Jogwar, 2011). For example, a net-
work of distillation columns separating a five-component mixture
(Fig. 2) has been shown to involve six recycles and three through-
puts with energy flows of 3 different orders of magnitude (see
Jogwar and Daoutidis (2010) for details). A reactor-heat exchanger
network designed for naphtha reforming (Fig. 3) has also been
shown to be composed of 9 recycles and 10 throughputs, with
the various energy flows spanning three orders of magnitude (see
Jogwar (2011) for details).

It can be reasonably argued that the multi-loop integrated struc-
ture of a complex process network has the potential to demonstrate
multi-time scale dynamics, and the dynamic characteristics exhib-
ited by the parent complex network can be inferred from the
properties of its building blocks. Furthermore, the interconnection
of (a large number of) these building blocks can result in interac-
tions and dynamic phenomena being exhibited by these networks
that are more intricate than can be anticipated by considering
the mere association of these building blocks. The development
of a model reduction and control framework for such complex
networks, building upon the results obtained for simple networks
is the main objective of this paper.

In Section 2, we develop a singular perturbations-based reduc-
tion framework for a generic complex energy-integrated process
network. Singular perturbations have been used extensively for
model reduction and control applications (O’Malley, 1991; Ladde
and Siljak, 1983; Desoer and Shahruz, 1986; Khalil and Kokotovic,
1979; Kokotovic, 1981; Kokotovic et al., 1986; Dmitriev and Kurina,
2006). The key distinguishing feature of the systems considered
is that they are (typically) in a non-standard singularly perturbed
form. Such systems have received much less attention in the litera-
ture, especially in the case of multiple (more than two) time scales
(Fenichel, 1979; Marino and Kokotovic, 1988; Kumar et al., 1998;
Vora et al., 2006). The model reduction framework is subsequently
exploited to develop a graph-based reduction framework which
is the main contribution of this paper. In Section 3, we describe
this graph-theoretic formulation to capture and automate the
major reduction steps in the analysis of complex energy-integrated
process networks. The advantages of the graph-based reduction
framework over the model-based singular perturbations approach
are also highlighted. The proposed methods are illustrated with
the help of a complex process network. Preliminary results on this
work were presented in Jogwar et al. (2011), Heo et al. (2012). Appli-
cations of the presented algorithm to complex energy-integrated
systems have been described in Heo et al. (2014).

2. Analysis of complex energy-integrated networks

Let us consider a generic complex energy-integrated network,
consisting of N units (indexed by j) and energy (enthalpy) flows,
hi, spanning m orders of magnitude (indexed by i). The energy
flows of different order of magnitude are segregated from each
other through the definition of small parameters εi, such that εi � 1
and εi+1/εi � 1 (with ε0 ≈ 1). Nominal steady state flows of each
magnitude are used to define these small parameters such that
εi = h0,s/hi,s, where subscript s denotes a steady state value. In
energy-integrated systems, the small parameters εi represent the

ratios of liquid to vapor enthalpy (in the case of a combined boiler-
condenser configuration), small and large material flows (in the
case of large reflux ratio) and/or the combination of these (in the
case of heat pump operation for high purity separation).

For each unit, we  consider the enthalpy change due to flow
in/out from other units and external energy flows dj (representing
contributions from heat of reaction, compressor work, etc). These
energy flows are scaled using the nominal steady state flows and
the corresponding energy balance equations can be represented in
the following form:

dH
dt

=
m−1∑
i=0

1
εi

Figi(H, ui) (1)

H is the vector of enthalpies of each of the N units in the network.
gi are vectors of dimension pi corresponding to the contributions
from the energy flows of order O(1/εi). Fi (of dimension N × pi)
represents the corresponding selector matrix such that Fi(j, k) is
1 if the energy balance equation of the enthalpy Hj contains the
term gi(k) and all the other elements of F are 0. ui are scaled energy
flow variables which can be used as potential manipulated inputs.
Note that Eq. (1) results from an energy balance under the assump-
tion that the contributions of kinetic and potential energy are very
small compared to internal energy and can therefore be neglected,
and the fact that at constant temperature and pressure, the rate of
change of enthalpy and internal energy are the same.

Eq. (1) is a singularly perturbed system with multiple singular
perturbation parameters in a non-standard form, potentially lead-
ing to energy dynamics evolving over m time scales (Vora et al.,
2006). Due to the lack of explicit separation of the state variables
according to the time scale they evolve in Eq. (1), a unit enthalpy
may  evolve in multiple time scales. To uncover this hierarchy of
time scales of unit enthalpies, we  successively use singular per-
turbations to derive approximate reduced order models of the
dynamics in the different time scales, starting with the fastest (cor-
responding to the largest energy flows).

Defining a stretched time scale �m−1 = t/εm−1, the dynamic equa-
tions (1) become:

dH
d�m−1

=
m−1∑
i=0

εm−1

εi
Figi(H, ui)

In the limit εm−1 → 0, the description of the dynamics in the
fastest time scale is given by:

dH
d�m−1

= Fm−1gm−1(H, um−1) (2)

as ∀i /= (m − 1), εm−1/εi → 0 as εm−1 → 0.
Note that all the enthalpies in a network may  not be affected

by the largest magnitude energy flows. This means Fm−1 does not
necessarily have a full row rank. Premultiplying Eq. (2) by FTm−1, we
obtain the simplified description of the fast dynamics as:

dHm−1

d�m−1
= (FTm−1Fm−1)ĝm−1(Hm−1, um−1) (3)

where Hm−1 = FTm−1H represent the enthalpies evolving in this fast
time scale and ĝm−1 represents the gm−1 vector in terms of Hm−1.

gm−1(H, um−1) = ĝm−1(Hm−1, um−1) (4)

Note that only the energy flows gm−1 of order O(1/εm−1) govern
the dynamics in this time scale. This fast dynamics converges to a
quasi-steady state given by the following constraints:

0 = (FTm−1Fm−1)ĝm−1(Hm−1, um−1) (5)
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