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a  b  s  t  r  a  c  t

Knowledge  of  the  production  loads  and  production  times  is an  essential  ingredient  for  making  successful
production  plans  and  schedules.  In steel  production,  the  production  loads  and  the  production  times
are  impacted  by  many  uncertainties,  which  necessitates  their  prediction  via  stochastic  models.  In order
to avoid  having  separate  prediction  models  for planning  and  for scheduling,  it is  helpful  to  develop  a
single  prediction  model  that allows  us to predict  both  production  loads  and  production  times.  In this
work,  Bayesian  network  models  are  employed  to  predict  the  probability  distributions  of  these  variables.
First,  network  structure  is identified  by maximizing  the Bayesian  scores  that  include  the  likelihood  and
model  complexity.  In  order  to handle  large  domain  of  discrete  variables,  a novel  decision-tree  structured
conditional  probability  table  based  Bayesian  inference  algorithm  is developed.  We  present  results  for  real-
world  steel  production  data  and  show  that  the proposed  models  can  accurately  predict  the  probability
distributions.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Accurate estimation of the production loads and the total pro-
duction times in manufacturing processes is crucial for optimal
operations of real world industrial systems. In this paper, a produc-
tion load represents the number of times that a product is processed
in the corresponding process unit and a production time is defined
as the length of time from production start to completion. Produc-
tion planning and scheduling for short, medium and long term time
horizons employ various optimization models and algorithms that
require accurate knowledge of production loads and total produc-
tion times from information at each of the processing steps. The
approaches to predict the production loads and total production
times can be either based on mechanistic model or can employ
data-driven techniques. Model-based prediction methods may  be
applied only if accurate mechanistic models of the processes can
be developed. First principal models require in-depth knowledge
of the processes and still cannot take into consideration all uncer-
tainties that exist in the processes. Therefore, mechanistic models
may  not work well for prediction of production loads and produc-
tion times of the real-world industrial processes. On the other hand,
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data-driven approaches do not require in-depth process knowl-
edge and some advanced techniques can deal with the process
uncertainties.

The most straightforward approach is to use the classical sta-
tistical models (e.g. regression models) that estimate the values of
new production loads and a production time from the past values in
the historical process data. The relationships between the targeted
variables and other relevant variables are used to compute the sta-
tistical model that can predict the production loads and production
times. However, such models are too simple to predict the nonlin-
ear behavior and estimate the system uncertainties. An alternative
simple method is to compute the average of these values per each
production group that has similar production properties and then
utilize the average values of each production group as the predic-
tion (Ashayeria et al., 2006). In this case the prediction accuracy
significantly depends on the rules that govern creation of produc-
tion groups and it may  be challenging to find the appropriate rules
from process knowledge only. To overcome this limitation, super-
vised classification techniques such as artificial neural networks
(ANN), support vector machine, Fisher discriminant analysis and
K-nearest neighbors (KNN) may  be useful to design the rules to
make production groups from historical process data. However,
even though we can accurately classify the historical process data
into an appropriate number of production groups, these methods
do not consider model uncertainties and cannot handle missing
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values and unobserved variables. In addition, we are typically
forced to have multiple specific models tailored for specific pur-
poses, e.g. for production planning or for scheduling, which causes
model maintenance issues and lack of model consistency.

Bayesian network (BN) models offer advantages of having a sin-
gle prediction model for predicting the production loads and total
process times in planning and scheduling. Bayesian networks are
also called directed graphical models where the links of the graphs
represent direct dependence among the variables and are described
by arrows between links (Pearl, 1988; Bishop, 2006). Bayesian
network models are popular for representing conditional inde-
pendencies among random variables under system uncertainty.
They are popular in the machine learning communities and have
been applied to various fields including medical diagnostics, speech
recognition, gene modeling, cancer classification, target tracking,
sensor validation, and reliability analysis.

The most common representations of conditional probability
distributions (CPDs) at each node in BNs are conditional probabil-
ity tables (CPTs), which specify marginal probability distributions
for each combination of values of its discrete parent nodes. Since
the real industrial plant data often include discrete variables which
have large discrete domains, the number of parameters becomes
too large to represent the relationships by the CPTs. In order to
reduce the number of parameters, context-specific independence
representations are useful to describe the CPTs (Boutilier et al.,
1996). Efficient inference algorithm that exploits context-specified
independence (Poole and Zhang, 2003) and the learning methods
for identification of parameters of context-specific independence
(Friedman and Goldszmidt, 1996; Chickering et al., 1997) have
been developed. The restriction of these methods is that all dis-
crete values must be already grouped at an appropriate level of
domain size since learning structured CPTs is NP-hard. However,
discrete process variables typically have large domains and the task
of identifying a reasonable set of groups that distinguish well the
values of discrete variables requires in-depth process knowledge.
To overcome this limitation, attribute – value hierarchies (AVHs) that
capture meaningful groupings of values in a particular domain are
integrated with the tree-structured CPTs (DesJardins and Rathod,
2008). Such approach is not applicable in general process systems,
since some discrete process variables do not contain hierarchal
structures and thus AVHs cannot capture the useful abstracts of
values in that domain. In addition, this model cannot handle the
continuous variables without discretizing them. Furthermore, the
authors do not describe how to apply AVH-derived CPTs to Bayesian
inference. Therefore, this method has difficulty predicting proba-
bility distributions of production loads and total process time from
observed process variables in the real-world industrial processes.
Efficient alternative inference methods in Bayesian Networks con-
taining CPTs that are represented as decision trees have been
developed (Sharma and Poole, 2003). The inference algorithm is
based on variable elimination (VE) algorithm. However, because the
computational complexity of the exact inference such as VE grows
exponentially with the size of the network, this method may  not
be appropriate for Bayesian networks for large scale industrial data
sets. In addition, the method does not deal with application of the
decision-tree structured CPTs to hybrid Bayesian networks, where
both discrete and continuous variables appear simultaneously.

In hybrid Bayesian networks, the most commonly used model
that allows exact inference is the conditional linear Gaussian (CLG)
model (Lauritzen, 1992; Lauritzen and Jensen, 2001). However,
the proposed network model does not allow discrete variables to
have continuous parents. To overcome this limitation, the CPDs of
these nodes are typically modeled as softmax function, but there
is no exact inference algorithm. Although an approximate infer-
ence via Monte Carlo method has been proposed (Koller et al.,
1999), the convergence can be quite slow in Bayesian Networks

with large domain of discrete variables. Another approach is to dis-
cretize all continuous variables in a network and treat them as if
they are discrete (Kozlov and Koller, 1997). Nevertheless, it is typ-
ically impossible to discretize the continuous variables as finely
as needed to obtain reasonable solutions and the discretization
leads to a trade-off between accuracy of the approximation and
cost of computation. As another alternative, the mixture of trun-
cated exponential (MTE) model has been introduced to handle the
hybrid Bayesian networks (Moral et al., 2001; Rumi and Salmeron,
2007; Cobb et al., 2007). MTE  models approximate arbitrary prob-
ability distribution functions (PDFs) using exponential terms and
allow implementation of inference in hybrid Bayesian networks.
The main advantage of this method is that standard propagation
algorithms can be used. However, since the number of regres-
sion coefficients in exponential functions linearly grows with the
domain size of discrete variables, MTE  model may  not work well
for the large Bayesian networks that are required to represent the
industrial processes.

Production planning and scheduling in the steel industry are
recognized as challenging problems. In particular, the steel plate
production is one of the most complicated processes because steel
plates are high-variety low-volume products manufactured on
order and they are used in many different applications. Although
there have been several studies on scheduling and planning prob-
lems in steel production, such as continuous casting (Tang et al.,
2000; Santos et al., 2003), smelting process (Harjunkoski and
Grossmann, 2001) and batch annealing (Moon and Hrymak, 1999),
few studies have dealt with steel plate production scheduling. Steel
rolling processes manufacture various size of plates from a wide
range of materials. Then, at the finishing and inspection processes,
malfunctions occurred in the upstream processes (e.g. smelting
processes) are repaired, and additional treatments such as heat
treatment and primer coating are applied such that the plates
satisfy the intended application needs and satisfy the demanded
properties. In order to obtain successful plans and schedules for
steel plate production, it is necessary to determine the production
starting times that meet both the customer shipping deadlines and
the production capacity. This requires prediction models that can
accurately predict the production loads of finishing and inspection
lines and the total process time. However, due to the complexity
and uncertainties that exist in the steel production processes, it is
difficult to build the precise prediction models. These difficulties
have been discussed in the literature (Nishioka et al., 2012).

In our work, in order to handle the complicated interaction
among process variables and uncertainties, Bayesian networks are
employed for predicting of the production loads and prediction of
the total production time. Since the steel production data have large
domain of discrete variables, their CPDs are described by tree struc-
tured CPTs. In order to compute the tree structured CPTs, we use
decision trees algorithm (Breiman et al., 1984) that is able to group
the discrete values to capture important distinctions of continuous
or discrete variables. If Bayesian networks include continuous par-
ent nodes with a discrete child node, the corresponding continuous
variables can be discretized as finely as needed, because the domain
size of discretized variable does not increase the number of param-
eters in intermediate factors due to decision-tree structured CPTs.
Since the classification algorithms are typically greedy ones, the
computational task for learning the structured CPTs is not expen-
sive. Then, the intermediate factors can be described compactly
using a simple parametric representation called the canonical table
representation.

As for Bayesian network structure, if the cause–effect relation-
ship is clearly identified from process knowledge, knowledge based
network identification approach is well-suited. Such identification
of cause–effect relationships may  require in-depth knowledge of
the processes to characterize the complex physical, chemical and
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