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a  b  s  t  r  a  c  t

This  work  extends  the  granulation  model  published  by Braumann  et al. (2007)  to  include  multiple  com-
partments  in  order  to  account  for  mixture  heterogeneity  encountered  in  powder  mixing  processes.  A
stochastic  weighted  algorithm  is  adapted  to solve  the  granulation  model  which  includes  simultaneous
coalescence  and  breakage.  Then,  a new  numerical  method  to solve  stochastic  reactor  networks  is  devised.
The  numerical  behaviour  of the  adapted  stochastic  weighted  algorithm  is compared  against  the  existing
direct  simulation  algorithm.  Lastly,  the  performance  of the new  compartmental  model  is then  inves-
tigated  by  comparing  the  predicted  particle  size  distribution  against  an experimentally  measured  size
distribution.  It is  found  that the  adapted  stochastic  weighted  algorithm  exhibits  superior  performance
compared  to  the  direct  simulation  algorithm  and  the  multi-compartment  model  produces  results  with
better  agreement  with  the  experimental  results  compared  to the  original  single-compartment  model.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Granulation is a size enlargement process to produce granules
with desired properties. It is one of the key processes in the man-
ufacture of fertilisers, detergents and pharmaceuticals. It is usually
performed to reduce dustiness, which leads to improvements in
powder handling and transportation.

Modelling approaches for wet granulation processes can be sep-
arated into two categories: population balance modelling and the
discrete element method (DEM). The population balance approach
tracks the change in the particle population with time through
birth and death processes. For applications in granulation, these
processes are usually the coalescence and breakage of particles
(Braumann et al., 2007). On the other hand, in DEM, the motion of
each particle and droplet is computed simultaneously using New-
tonian equations of motion (Cameron et al., 2005). However, by
itself, DEM does not consider the aggregation of granules and other
processes (Barrasso and Ramachandran, 2014), and it is also usually
very computationally expensive.
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The current work involves modelling a high shear granulation
process using a population balance model through a stochas-
tic modelling framework. Stochastic particle methods are able to
simulate a high number of independent particle properties, in
the case of granulation, the properties included in the modelling
framework are usually solid content, liquid content, as well as
porosity (Barrasso and Ramachandran, 2014; Chaudhury et al.,
2014; Darelius et al., 2006; Rajniak and Matsoukas, 2013; Oullion
et al., 2009; Poon et al., 2008).

Currently, there are two popular stochastic particle methods
available in the literature: the direct simulation algorithm (DSA)
and stochastic weighted algorithms (SWAs). In basic implemen-
tations of the DSA involving coagulation, the particle ensemble
may  be depleted to the point that there is only one computational
particle left in the ensemble and this is avoided by duplicating
the ensemble when the particle count falls below 50% (Braumann
et al., 2010b). Even then, it is often pointed out that the DSA
produces unstable estimates of the concentrations of the rarer par-
ticles (Menz et al., 2013; Patterson et al., 2011). Weighted particle
methods, or SWAs may be used to counter these problems. In SWAs,
each particle is given a statistical weight which is proportional to
the number of particles represented by the computational particle.
Instead of depleting the particle ensemble, coagulation events in
SWAs adjust the statistical weights (Patterson et al., 2011).

These stochastic particle methods are traditionally used
to model processes without particle transport, implying that the
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Nomenclature

aP constant for confidence intervals
d mass fraction for an individual sieve class
e particle coefficient of restitution
ecoag coalescence coefficient of restitution
eli

liquid coefficient of resistance
eso solid coefficient of resistance
esr reacted solid coefficient of resistance
Fc ratio of normalisation parameters
g breakage frequency (s−1)
Ha height of asperities (m)
K coalescence kernel (m3 s−1)
katt attrition rate constant (s m−5)
kcol collision rate constant (m3)
kcomp compaction rate constant (s/m)
kpen penetration rate constant (kg0.5 s−1.5 m−3.5)
kreac reaction rate constant (m s−1)
L number of stochastic runs
le external liquid volume (m3)
li internal liquid volume (m3)
M calculated ensemble property
M0 particle number concentration (m−3)
M1 first volume moment
M2 Second volume moment (m3)
m mass of particle (kg)
mtotal total normalised mass in the network (kg m−3)
Ncompartments number of compartments
Nmax maximum number of computational particles
NS number of sieve classes
n number of computational particles
nc number of copies to make
nimpeller impeller speed (rev s−1)
OF objective function
P confidence level
p pore volume (m3)
Q3 empirical cumulative distribution function
R particle radius (m)
Rbreak rate of breakage (s−1)
Rcol rate of collisions (s−1)
Rdroplet number inflow rate of droplets (m−3 s−1)
Rincep rate of inception (s−1)
Rinflow rate of inflow (s−1)
Rout rate of particle outflow (s−1)
rpen rate of penetration (m3 s−1)
rreac,e, rreac,i rate of reaction (m3 s−1)
so volume of original solid (m3)
sr volume of reacted solid (m3)
s∗

r critical amount of reacted solid (m3)
tCPU CPU time (s)
tf simulation stop time (s)
Ucol particle–particle collision velocity (m s−1)
Uimp particle–impeller impact velocity (m s−1)
Vdroplet,mono volume of droplets (m3)
V̇l binder flow rate (m3 s−1)
VN normalisation parameter (m3)
Vreactor reactor volume (m3)
v total particle volume (m3)
vparent,min smallest particle that can break (m3)
w statistical weight
Y number of responses
yexp responses from experiments
ysim responses from simulations
z state of the stochastic particle system

Greek symbols
˛daughter breakage; distribution
ˇdaughter breakage; distribution
�t  reactor time step (s)
� particle porosity
� high-precision solution
� binder viscosity (Pa s)
�1 empirical mean of a measured functional
�2 empirical variance of a measured functional
�dsd droplet geometric number mean size (m)
�psd powder geometric number mean size (m)
�min,max ratio of the biggest to the smallest possible fragment
�max maximum fraction of the particle that can break
�le , �li

, �sr binder density (kg m−3)
�so material density (kg m−3)
	dsd droplet geometric number standard deviation
	psd powder geometric number standard deviation

 reactor characteristic residence time (s)
� parameter for breakage

system is perfectly mixed (Braumann et al., 2010b; Menz et al.,
2012). However, in powder mixing process such as high shear
granulation, advective or diffusive particle transport should not
be ignored. Granulation processes usually proceed in three stages
(Iveson et al., 2001): wetting and nucleation, consolidation and
growth, and attrition and breakage. The nucleation stage is the
process of bringing the liquid binder into contact with the powder
and is often regarded as a very important stage in granulation
processes (Faure et al., 2001). In the mixer used in this work, not all
powder particles are wetted in the same way  and the assumption
of uniformity breaks down. It is clear this has to be included in the
model.

To account for the heterogeneous behaviour of powder mixing
processes, several compartmental models have been proposed and
these models often involve DEM simulations to gain particle flow
data as input to the population balance models (Bouffard et al.,
2012; Freireich et al., 2011; Li et al., 2012; Sen and Ramachandran,
2013). However, not much attention is paid in implementing
stochastic methods in compartmental models with particle trans-
port. In most of the models, the transport of particles is included
as an extra term in the population balance equations (Denis
et al., 2003; Li et al., 2012; Maronga and Wnukowski, 1997).
Just recently, Menz et al. (2014) presented a sequential modular
approach to solve a reactor network with a multi-dimensional pop-
ulation balance model coupled to gas-phase chemistry using the
stochastic approach. Irizarry (2012) presented the ‘particle bun-
dle flow’ method which ensures that particles will not hop across
two domains in a single time step. In granulation, the stochastic
approach is used by Bouffard et al. (2012) to incorporate parti-
cle flow into their two-dimensional population balance model. The
main purpose of this paper is to include spatial inhomogeneity into
an existing granulation model (Braumann et al., 2007) with multi-
ple compartments. In conjunction with this, a stochastic weighted
algorithm (Patterson et al., 2011) which improves numerical sta-
bility is adapted to this model. This paper also presents a new
method to transport computational particles across different com-
partments.

This paper is structured as follows. In Sections 2 and 3, the pop-
ulation balance model and compartmental model are described in
detail. Section 4 presents the algorithms used to solve the com-
partmental model, which include an adapted stochastic weighted
algorithm that is crucial in providing numerical stability. Sections 5
and 6 assess the numerical issues and convergence in the stochastic
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