
Computers and Chemical Engineering 75 (2015) 60–64

Contents lists available at ScienceDirect

Computers  and  Chemical  Engineering

j our na l ho me  pa g e: www.elsev ier .com/ locate /compchemeng

Note

Derivative-free  methods  applied  to  daily  production  optimization  of
gas-lifted  oil  fields

Caio  Merlini  Giuliani,  Eduardo  Camponogara ∗

Department of Automation and Systems Engineering, Federal University of Santa Catarina, Cx.P. 476, Florianópolis, SC 88040-900, Brazil

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 1 July 2014
Received in revised form 9 December 2014
Accepted 19 January 2015
Available online 28 January 2015

Keywords:
Derivative-free optimization
Petroleum production optimization
Trust region
Augmented Lagrangian
Simulation

a  b  s  t  r  a  c  t

In the  oil  industry,  computer  simulators  are  routinely  applied  on day  to day  operations  and  in what-if
analyses.  With  the  increasing  complexity  of  operations,  engineers  are  relying  on simulation  to  synthe-
size  models  for  mathematical  optimization  or  else  applying  derivative-free  methods  for  simulation-based
optimization,  which  requires  only  the  sampling  of  the  objective  function.  This  work  adapts  an  algorithm
based  on  augmented  Lagrangian  and  derivative-free  trust-region  algorithms  to  handle  hard  constraints
found  in  production  optimization.  The  effectiveness  of  the proposed  method  is  assessed  in an  oil  pro-
duction  network  and  compared  with  mathematical  optimization  based  on  piecewise-linear  models.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The production optimization of oil fields entails solving chal-
lenging problems that have been receiving attention of researchers
and practitioners. A common practice for production maximi-
zation consists in developing models of wells, risers, separators
and other equipment which are then used in mathematical opti-
mization (Alarcón et al., 2002; Silva and Camponogara, 2014).
The identification and validation of such mathematical models are
rather complex, relying on simulation analysis and field measure-
ments. As numerical simulators are intensively used in day-to-day
analyses, they are periodically tunned to ensure accuracy and
reproduce the observed field behavior. One modeling approach
uses the simulator to build piecewise-linear models that yield pre-
dictions with the desired accuracy. With such models, production
optimization is approximated with a Mixed-Integer Linear Pro-
gramming (MILP) problem to which specialized and off-the-shelf
algorithms can be readily applied (Codas et al., 2012). However,
piecewise-linear models can be excessively large to ensure the
desired accuracy, particularly for multidimensional functions. Also,
the design of effective piecewise-linear approximations depends
on strong knowledge of both the Physics and advanced modeling
strategies (Vielma et al., 2010). The difficulties involved in obtaining
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mathematical models make attractive the optimization procedures
that use simulators directly, what is known as simulation-based
optimization (Sandu and Zhang, 2008; Gunnerud et al., 2013).
Gradient-based optimization can be used if the gradients are pro-
vided by the simulators or accurately approximated from outside.
Derivative-free methods, on the other hand, rely solely on function
values calculated by simulation, without the need of gradients.

Traditionally, derivative-free methods are a part of the uncon-
strained optimization literature, but can be extended to handle
certain classes of constraints. Particularly, Kolda et al. (2006) devel-
oped a direct-search method using augmented Lagrangian (Conn
et al., 1996) to handle nonlinear constraints. This work follows
a similar strategy, but the augmented Lagrangian subproblem is
solved with the trust-region method of Conn et al. (2009), which
was adapted in this work to deal with linear constraints.

Derivative-free trust-region methods work by sampling the
objective function within a neighborhood of the incumbent solu-
tion. The model of the objective obtained from the samples is valid
locally, inside the so-called trust-region. Then, an algorithm can
produce the next trial solution by optimizing over the trust-region.
These methods differ depending on the shape of the trust-region,
the kind of model for the objective, and model maintenance.

In this work, a derivative-free algorithm was  applied to maxi-
mize oil production of an offshore gas-lifted oil field, which was
modeled with a multiphase-flow simulator widely employed in
the petroleum industry. The production platform operates sev-
eral wells with subsea completion, being subject to physical limits
which were modeled as nonlinear constraints, such as bounds on
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flow processing and compression capacity. To assess the merit
of the derivative-free methods, experiments were performed by
varying the operating conditions of the field. Further, an MILP
program approximating the production system was obtained by
piecewise-linearizing the various models and then solved with an
optimization solver. A comparison between MILP and derivative-
free optimization indicates that the latter can be effective.

2. Problem definition

This work focuses on the problem of maximizing oil production
of offshore oil fields operated by gas-lift, while accounting for phys-
ical and operational constraints. Gas-lift consists in injecting high
pressure gas at the bottom of production wells to increase produc-
tion. The oil field encompasses N gas-lifted wells, each connected to
one of M manifolds. The production flow of each manifold is routed
to a dedicated separator and split in oil, gas, and water streams. The
gas produced is compressed to be re-injected or exported.

Let qn
inj be the flow of gas injected into well n and qinj =

(q1
inj, . . .,  qN

inj) be the vector with the injection rates for all of the
wells. Because the wells that are connected to a given manifold
interact, the actual production of each well is a function of the vec-
tor qinj. The total oil and gas gathered by a manifold m are denoted

by qmanif, m
o

(
qinj

)
and qmanif, m

g

(
qinj

)
, respectively. The problem of

optimizing the oil production subject to constraints on gas com-
pression and lift-gas availability is formulated as follows:

max  f =
∑M

m=1
qmanif, m

o

(
qinj

)
(1a)

s.t.
N∑

n=1

qn
inj ≤ qmax

inj (1b)

In ≤ qn
inj ≤ un, n = 1, . . .,  N (1c)∑M

m=1
qmanif, m

g

(
qinj

)
≤ qcomp

g , (1d)

where:

• The values ln and un are the lower and upper bounds of gas injec-
tion for well n, while qmax

inj is the total gas available for injection
in the field.

• The gas compression capacity of the field, denoted qcomp
g , estab-

lishes an upper bound on the total gas production.

Additionally, the total gas injected and total gas produced are
defined as

qtotal
inj =

∑N

n=1
qn

inj, qtotal
g =

∑M

m=1
qmanif, m

g

(
qinj

)
.

The difference between these two quantities is the remaining gas,
which is not re-injected but exported from the platform:

qexport
g = qtotal

g − qtotal
inj .

In this work, all the N wells are in production. The production func-
tions of gas and oil gathered by the manifolds, respectively qmanif, m

g

and qmanif, m
o , are obtained directly from simulation. That is, given

a vector of lift-gas flows qinj, the simulator computes the produc-
tion of each well (consequently, the production in each manifold)
considering their productivity and the interactions, which occur
through shared manifolds and pressure drops in pipelines.

The production optimization problem addressed in this work is
representative of real-world offshore oil fields. Also, the derivative-
free optimization approach is not limited to this particular problem,
allowing other physical constraints to be directly enforced by

the simulator or explicitly imposed by algebraic constraints. For
instance, constraints can be introduced to restrict any variable that
is available by simulation, such as pressures and flow rates.

3. Derivative-free algorithms

Notice that, without the nonlinear constraint (1d) which
imposes a limit on compression capacity, the feasible region of the
production optimization problem (1) would consist of a polyhedron
on the decision variables qinj. An additional difficulty with respect to
constraint (1d) is the fact that the left-hand side, which corresponds
to qtotal

g , is not known explicitly, but rather calculated by simulation.
Although there exist derivative-free methods which handle such
“black-box” constraints (Abramson et al., 2009), our approach relies
on the augmented Lagrangian for general constraints, in which non-
linear constraints are substituted by penalizations in the objective
function. The resulting problems are then solved by a derivative-
free trust-region method that handles linear constraints on the
variables.

The augmented Lagrangian algorithm chosen is based on (Conn
et al., 1996), adapted to address problems of the form

min  f (x) (2a)

s.t. Ax − b ≤ 0 (2b)

c(x) ≤ 0 (2c)

where f : R
n → R, c : R

n → R
m, A ∈ R

p×n, and b ∈ R
p.

In place of solving this problem directly, the nonlinear con-
straints c1, . . .,  cm are partitioned into q disjoint subsets {Qj}q

j=1
and included as penalties in the objective, yielding the augmented
Lagrangian function1

L(x, �, �) = f (x) +
q∑

j=1

�j

2

∑
i∈Qj

[
max

(
0, �i+

1
�j

ci(x)

)2

−�2
i

]
. (3)

where � = (�1, . . .,  �m) are Lagrange multiplier estimates and the
�j > 0 is the parameter that penalizes the violation of constraints in
set Qj .

The method consists of solving a sequence of problems of the
form

min
x

L(x, �, �) (4a)

s.t. Ax − b ≤ 0, (4b)

where � and � are kept constant. The solution to this problem is
an approximation to the solution of the original problem, provided
that either the penalty � is low (infeasibility is highly penalized)
or the Lagrange multiplier estimates � are sufficiently accurate
with regards to those of a stationary point—one satisfying KKT
conditions. If the solution to subproblem (4) does not satisfactorily
solve the original problem (2), the Lagrange multipliers � must be
improved or the penalty parameter � has to be lowered. Then, prob-
lem (4) is solved again with the updated parameters. This method
can be summarized by the following steps:

• Solve the augmented Lagrangian subproblem (4)
• In case the solution is not satisfactory:

- Update Lagrange multiplier estimates
- Update penalty parameters

1 This augmented Lagrangian differs from the original of (Conn et al., 1996) so as to
handle inequalities without explicit use of slack variables, as discussed by Bertsekas
(1999).



Download English Version:

https://daneshyari.com/en/article/172287

Download Persian Version:

https://daneshyari.com/article/172287

Daneshyari.com

https://daneshyari.com/en/article/172287
https://daneshyari.com/article/172287
https://daneshyari.com

