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a  b  s  t  r  a  c  t

A  direct  discretization  approach  and an  operator-splitting  scheme  are  applied  for  the  numerical  simula-
tion  of a population  balance  system  which  models  the  synthesis  of  urea  with  a uni-variate  population.  The
problem  is  formulated  in axisymmetric  form  and  the  setup  is  chosen  such  that  a  steady  state  is reached.
Both  solvers  are  assessed  with  respect  to the  accuracy  of the  results,  where  experimental  data  are  used
for comparison,  and the  efficiency  of  the  simulations.  Depending  on  the  goal  of  simulations,  to  track  the
evolution  of the  process  accurately  or to  reach  the  steady  state  fast, recommendations  for  the  choice  of
the solver  are  given.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Population balance systems (PBSs) model particulate flows
where not the behavior of the individual particles is of interest but
the behavior of the particles in the mean. To this end, the particle
population is described with a particle size distribution (PSD) and
an equation for the PSD is derived whose terms model, e.g., trans-
port, nucleation, growth, and aggregation of particles. Together
with equations for the energy or mass balance and an equation
which describes the flow field, the behavior of the particulate flow
is modeled with a so-called PBS.

A major challenge for the numerical simulation of PBSs arises
from the fact that the PSD does not only depend on time and space,
like, e.g., the flow field and the temperature, but it depends also on
properties of the particles, the so-called internal coordinates. After
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having applied a temporal discretization to the PBS, the equation
for the PSD is given in a domain whose dimension is the sum of the
spatial dimension and the number of internal coordinates.

One can find in the literature different proposals for dealing with
the high dimensionality of the equation for the PSD. A direct dis-
cretization of the high-dimensional equation was studied, e.g., in
Bordás et al. (2013), John et al. (2009), John and Roland (2010) and
John and Suciu (2014). This approach is motivated by a potentially
good accuracy of the computed solution, since no simplifications to
the original problem were applied. However, the numerical solu-
tion of an equation in a higher-dimensional domain might be rather
expensive. Motivated by performing more efficient simulations,
other approaches were proposed. Moment-based methods, like
the quadrature method of moments (QMOM) or the direct QMOM
(DQMOM) (Marchisio and Fax, 2005; McGraw, 1997) replace the
equation for the PSD by a system of equations for the first moments,
with respect to the internal coordinates, of the PSD. These methods
are quite popular in the engineering community. But the original
PBS is modified quite strongly and the reconstruction of the PSD
from the first moments is a severely ill-posed problem (John et al.,
2007). Another approach motivated by efficiency, which does not
change the original PBS, is the operator-splitting scheme proposed
in Ganesan (2010). This scheme splits the computation of the solu-
tion into subproblems with respect to the spatial and to the internal
coordinates (Ganesan, 2010; Ganesan and Tobiska, 2012). To the
best of our knowledge, systematic numerical comparisons of these
different schemes have not been performed in the literature so far.
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The goal of this paper consists in performing the first step in the
systematic assessment of different solvers for PBSs. In this step, a
direct discretization and an operator-splitting scheme are studied.
This choice is motivated by our rich experience with these methods.
By the way, it seems to be the first time that an operator-splitting
method is applied for solving a PBS with aggregation.

For an assessment of numerical methods, one needs a prob-
lem where some reference values of the solution are known. To
this end, a model of urea synthesis from Hackbusch et al. (2012),
with a uni-variate population, will be used where some experi-
mental data from Borchert and Sundmacher (2011) are available.
This model will be considered in a comparable simple situation: the
flow domain is a cylindrical pipe, the flow fields are stationary, the
velocity field is given by a Hagen–Poiseuille profile, and the setup
is such that the solution, in cylindrical coordinates, can be assumed
to be independent of the angle. Since the velocity field is known,
there is no need to solve the Navier–Stokes equations. Thus, the
computing times of the different numerical methods for solving
the equation for the PSD will constitute a large part of the overall
computing times of the simulations. From the independence of the
angle, it follows that the PBS can be written in axisymmetric form
which reduces the spatial dimension from three to two.

The paper is organized as follows. Section 2 presents the popu-
lation balance model of the urea synthesis. The solvers for the PBS
are described in Section 3. Section 4 presents the numerical studies
and an outlook will be given in Section 5.

2. The population balance model of the urea synthesis

This section presents the population balance system which
models the urea synthesis. It is in principal the same model as
considered in Hackbusch et al. (2012). Only, the flow domain
has a different form, hence also the flow field, such that a 3D-
axisymmetric form of this model can be used in the numerical
simulations. It will be explained in Section 4 that the different flow
field will also change the impact of growth and aggregation on the
urea population compared with Hackbusch et al. (2012).

The model for the considered urea population consists of a sys-
tem of equations describing the energy balance, the mass balance
of the dissolved urea, and the behavior of the PSD.

For the flow field u [m/s] in the cylindrical domain  ̋ ⊂ R
3 a

Hagen–Poiseuille profile is assumed. The boundary � of  ̋ is com-
posed of the inlet � in, the outlet � out, and the wall �wall.

Let mmol = 60.06 × 10−3 [kg/mol] be the molar mass of urea, then
the saturation concentration of the dissolved urea is given by

csat(T) = 35.364 + 1.305(T − 273.15)
mmol

[mol/m3], (1)

where T is the temperature in the system. Further, the growth rate
of the urea particles is modeled by

G(c, T) =

⎧⎪⎪⎨
⎪⎪⎩
kg

(
c − csat(T)
csat(T)

)g
, if c > csat(T),

0, else,
[m/s], (2)

with the growth rate constant kg = 10−7 [m/s] and the growth rate
power g = 0.5 [·]. Here, c[mol/m3] is the molar concentration of the
solute, and its evolution is described by

∂c
∂t

− D�c  + u · ∇c + H�
mmol

= f�
mmol

in (0,  te) × ˝,  (3)

where

H� = 3�dkVG(c, T)

∫ �max

�min

�2f d�, and f� = −�dkV�3
minBnuc.

In this equation, D = 1.35 × 10−9[m2/s] is the diffusion coefficient of
urea in ethanol, �d = 1323 [kg/m3] is the density of urea (dispersed
phase), kV = �/6 [·] is the scaling factor from diameters to volume
(where it is assumed that all particles are of spherical shape) and
te [s] is the final time for the simulations. The nucleation rate Bnuc

is defined by

Bnuc =

⎧⎪⎪⎨
⎪⎪⎩
˛nuc exp

(
−ˇnuc

ln2(c/csat(T))

)
, if  c > csat(T),

0, else,

where ˛nuc = 1 ×108 is the nucleation constant and
ˇnuc = 1.66667 × 10−4 is a model constant. The PSD is denoted
by f [1/m4] and the diameter of the particles is � [m], where
�min is the smallest diameter (nuclei size) and �max is an upper
bound for the largest diameter. The last term on the left-hand
side of (3) describes the decrease of dissolved urea due to the
growth of particles and the term on the right-hand side models the
consumption of dissolved urea due to the nucleation of particles.
Eq. (3) has to be equipped with initial and boundary conditions.
The boundary condition is given by⎧⎨
⎩
c(t, x) = csat(Tin), x ∈ �in,

D
∂c
∂n�

= 0, x ∈ �out ∪ �wall,
(4)

where n� is the outward pointing unit normal on � and Tin is the
temperature at the inlet, see (6). In addition, an initial condition is
needed for closing equation (3). Since such a condition is not known
from the experiments, the inlet concentration value is used as the
initial value, that is

c(0, x) = csat(Tin) x ∈ ˝.

The model for the energy balance is of the same type as the
model of the mass balance

�cp

(
∂T
∂t

+ u · ∇T
)

− ��T  + ıhcrystH� = ıhcrystf� in (0, te) × ˝.

(5)

In this energy equation, � = 789 [kg/m3] is the density of ethanol
at 298 K, cp = 2441.3 [J/(kg K)] is the specific heat capacity of
ethanol, � = 0.167 [J/(K m s)] is its thermal conductivity, and
ıhcryst = 2.1645 × 105[J/kg] is the heat of solution (enthalpy change
of solution). The term on the right-hand side of (5) describes the
decrease of temperature resulting from the nucleation of particles
and the last term on the left-hand side the decrease of the tem-
perature due to the consumption of energy by the growth of the
particles. The known boundary conditions from the experiments
are⎧⎪⎪⎨
⎪⎪⎩

T(t, x) = Tin, x ∈ �in,

�
∂T
∂n�

= 0, x ∈ �out,

T(t, x) = Twall, x ∈ �wall,

(6)

with Tin = 301.15 [K] and Twall = 291.15 [K]. Hence, the suspension is
cooled at the wall. The initial condition was used in the same way
as for the mass balance, that is,

T(0, x) = Tin x ∈ ˝.

Finally, the model for the behavior of the PSD is presented. Since
it is assumed that the particles are of spherical shape, they can
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