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a  b  s  t  r  a  c  t

Measurement  information  in dynamic  chemical  processes  is  subject  to corruption.  Although  nonlinear
dynamic  data  reconciliation  (NDDR)  utilizes  enhanced  simultaneous  optimization  and  solution  tech-
niques  associated  with  a finite  calculation  horizon,  it is  still  affected  by different  types  of  gross  errors.
In  this  paper,  two  algorithms  of  data  processing,  including  correntropy  based  NDDR  (CNDDR)  as  well as
gross error  detection  and  identification  (GEDI),  are  developed  to  improve  the  quality  of  the  data  mea-
surements.  CNDDR’s  reconciliation  and  estimation  are  accurate  in  spite  of the  presence  of  gross  errors.  In
addition to CNDDR,  GEDI  with  a hypothesis  testing  and a distance–time  step  criterion  identifies  types  of
gross  errors  in  dynamic  systems.  Through  a case study  of  the free  radical  polymerization  of styrene  in  a
complex  nonlinear  dynamic  chemical  process,  CNDDR  greatly  decreases  the influence  of  the  gross  errors
on the  reconciled  results  and  GEDI  successfully  classifies  the  types  of gross  errors  of  the  measured  data.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Accurate process data is important for the evaluation of the
process performance and to justify current process data requires
large capital expenditures. Also, process control and optimization
schemes rely on accurate process data monitoring for trustwor-
thy assessments. However, process data are often inaccurate or
inconsistent with the mass balances, energy balances, and their
constraints of the process systems. The inaccuracy in the pro-
cess data may  come from the measurement information usually
corrupted by random measurement errors and systematic errors.
Random measurement errors can be small perturbations from the
true values. However, systematic errors, which are so called gross
errors, can be quite large. The primary concerns are the gross
errors usually caused by malfunctioning instruments, measure-
ment device biases or process deficiencies. The presence of random
errors decreases the precision of measurement information while
gross errors introduce inaccurate information. As the improvement
of the raw data set would increase the process performance and
maintenance efficiency, data reconciliation (DR), which could rec-
tify the errors in the raw data, would be very important. It uses the
redundancies in the measurements to improve the accuracy and
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precision of measurement information to reduce the influence of
measurement errors.

Kuehn and Davidson (1961) were the first to address DR. They
focused on the DR problem in steady-state chemical engineering
processes. Their proposed method was the solution to an optimiza-
tion problem. It minimized a weighted least-squares objective
function of errors between the measured and the estimated values
of process variables under static material and energy balance
constraints. Since then, several researchers have developed many
other approaches. Romagnoli and Stephanopoulos (1981) pro-
posed a systematic strategy for the location of the source and the
rectification of gross errors in a chemical process. Their strategy
can efficiently reduce the size of the DR problem and conform to
the general process of variable monitoring in a chemical plant.
Several researchers also proposed different strategies to enhance
the solution to DR problem (Serth and Heenan, 1986; Narasimhan
and Mah, 1987; Tong and Crowe, 1995; Rollins et al., 1996; Arora
and Biegler, 2001; Martinez Prata et al., 2010; Zhang et al., 2010;
Chen et al., 2013). In the study of dynamic data reconciliation
(DDR), Kalman Filter (KF) had been effectively used to smooth
measurement data (Sage and Melsa, 1971). KF estimates possess
the desirable statistical properties of being unbiased. KF can also
obtain the minimum variance under the assumption of the Gaus-
sian distribution. For the dynamic nonlinear system, Stanley and
Mah  (1977) tackled the DDR problem in a dynamic nonlinear pro-
cess using extended Kalman filter (EKF) (Narasimhan and Jordache,
2000). Their research showed that the reliability of EKF-based

http://dx.doi.org/10.1016/j.compchemeng.2015.01.005
0098-1354/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2015.01.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2015.01.005&domain=pdf
mailto:jason@wavenet.cycu.edu.tw
dx.doi.org/10.1016/j.compchemeng.2015.01.005


Z. Zhang, J. Chen / Computers and Chemical Engineering 75 (2015) 120–134 121

approaches often decreases while the nonlinear complexities and
modeling uncertainties of the system increase. Large errors and
divergence of the filter might occur (Romanenko and Castro, 2004;
Romanenko et al., 2004). Therefore, a model should be properly
selected in order to reduce complexity. Furthermore, when the
state and/or measurement equations were highly nonlinear and
the posterior distribution of the states was non-Gaussian, KF or EKF
based DDR would yield unsatisfactory reconciled and estimated
results in a number of applications (Chen et al., 2005, 2008).
The particle filtering (PF) technique, which is served as a general
filter in the nonlinear and non-Gaussian state-space systems, was
recently applied to DDR problems (Chen et al., 2008). However,
it was restricted to the use of process state-space models, and it
was not able to deal with inequality constraints, such as lower and
upper bounds on the states (Bai et al., 2007; Nicholson et al., 2014).

In the study of nonlinear dynamic processes, Leibman et al.
(1992) and later Ramamurthi et al. (1993) formulated the non-
linear dynamic data reconciliation (NDDR) problem and proposed
solution strategies by neglecting the random noise disturbances in
the state transition equations. The NDDR formulation included the
manipulated input variables as part of the objective function. It was
more general than the model used in filtering, whose manipulated
inputs are assumed to be known exactly (Narasimhan and Jordache,
2000). This formulation could deal with inequality constraint, and it
was widely used by many researchers (Chen and Romagnoli, 1998;
Kong et al., 2000; Martinez Prata et al., 2010). However, the NDDR
problem was still formulated as a weighted least-squares objec-
tive function which is the sum of squared measurement errors in
each time step. The function was minimized subject to the process
dynamic model. It was very sensitive to large measurement errors,
and it would lead to unsatisfactory reconciliation and estimation in
the presence of the gross errors.

Gross errors are random or deterministic errors without the
relation with the true values. In the original DR study, it was
assumed that the noise that affected the variables was  randomly
distributed with zero mean. However, in practice, gross errors may
occur. The presence of gross errors will affect the results of DR if
the large errors are not sufficiently eliminated or corrected. As a
result of smearing, both the reconciled measurements and the esti-
mates of states may  become distorted. Gross error detection and
identification (GEDI) is generally considered as a crucial technique
within the DR framework. In order to avoid corrupted adjustments,
the GEDI problem has received considerable attention in the past
few decades and a number of strategies have been developed. The
classical hypothesis testing strategies are the first methods used
for GEDI, including the global test (Almasy and Sztano, 1975), the
nodal test (NT) (Mah  et al., 1976) and the measurement test (MT)
(Mah  and Tamhane, 1982). Serth and Heenan (1986) proposed sev-
eral tests, including the iterative measurement test (IMT) and the
modified IMT. They were more efficient than MT  and NT in terms
of performance. Other methods, such as generalized likelihood
ratio methods (Narasimhan and Mah, 1987), maximum power test
methods (Crowe, 1992), principal component test methods (Tong
and Crowe, 1995), etc., were also developed for GEDI. A general
survey of gross error detection with data reconciliation approaches
was given by Özyurt and Pike (2004). However, most of the above
strategies were developed to solve the DR problems in steady-state
chemical processes.

After DR, the methods that identified gross errors in dynamic
systems were also developed because the process model error was
considered as an important contributing factor in the estimation of
the measurement bias and process state variables. McBrayer and
Edgar (1995) used the NDDR formulation to derive the resulting
difference between the measured and the reconciled values, and
they developed a method for bias detection in nonlinear dynamic
processes. Bagajewicz and Jiang (1997) proposed a new statistic

method to detect bias in the linear dynamic systems. Chen and
Romagnoli (1998) used the moving horizon concept and the cluster
analysis techniques to successfully distinguish outliers from nor-
mal  measurements in dynamic chemical processes. Bai et al. (2007)
developed an algorithm to deal simultaneously with bias correc-
tion and DR in dynamic processes. Xu and Rong (2010) proposed a
new framework for DR and measurement bias identification in gen-
eralized linear dynamic systems. Gonzalez et al. (2011) proposed
a Bayesian approach to determine the inconsistency of sensors.
They used the modified principal components for factor analysis
to determine the initial value, and then estimated sensor variance
and gross errors by means of the Bayesian estimation. In 2012,
they developed an online algorithm to detect and estimate gross
errors from measurement data under mass and energy balance con-
straints (Gonzalez et al., 2012). By applying filtering techniques,
Singhal and Seborg (2000) proposed a probabilistic formulation
that combined EKF and the expectation-maximization (EM) algo-
rithm in the measurement reconciliation. The new EKF-EM method
removed the outliers and reduced noise effects. Later, Chen et al.
(2008) used the PF technique for the NDDR problem and used a mix-
ture model comprising two Gaussian distributions to address the
effect of outliers. The outlier detection was more efficient than the
EKF-EM method in terms of performance. The strategies mentioned
above for GEDI problems only deal with outlier or bias detection
without considering different types of gross errors even if there
were mixed types of gross errors.

GEDI is also considered as sensor fault detection and isolation
problems in the area of fault detection and diagnosis (FDD). Many
different FDD approaches were developed to detect and isolate
sensor faults. Those approaches are mainly classified into two cat-
egories: the model-based approaches and the knowledge-based or
the data-driven approaches. The data-driven approaches include
the traditional multivariate statistical-based methods (such as
the principal component analysis and partial least-squares meth-
ods) and many other improved data-based methods (such as
independent component analysis, Gaussian mixture models, neu-
ral networks, support vector machines, and support vector data
description) (Ge et al., 2013). Those FDD methods of sensor fault
detection and isolation generally train models from data rather
than relying on accurate prior models which are not often avail-
able in practice. The techniques recently developed for data based
learning models contain closed loop identification technique (Wei
et al., 2010), neural networks (Samy et al., 2011; Sadough Vanini
et al., 2014), expert systems (Silva et al., 2012), fuzzy logic (Zhang
et al., 2013), and adaptive estimation (Zhang, 2011). Those FDD
methods can optimally exploit information on sensor faults whose
corresponding data are stored in the historical database of the plant.
In model-based approaches, the multiple-model (MM) approaches
are more flexible and powerful. The term “MM”  covers a wide range
of approaches whose common goal is to propose an architecture (or
hierarchy) for a bank of estimators or filters for isolation and iden-
tification of faults. The choice of the application domains in the MM
FDD schemes in implementing the Kalman filter (Wei  et al., 2010;
Pourbabaee et al., 2013) for linear dynamic system, the extended
Kalman filters (An and Sepehri, 2005) and particle filters (Alrowaie
et al., 2012) for nonlinear dynamic system. Those filters are used as
state estimators. Model-based approaches are by nature more pow-
erful and popular if a perfect analytical model can be created and
utilized. Many FDD approaches that detect and isolate sensor faults
are focused on permanent sensor bias faults (Pourbabaee et al.,
2013; Zhang, 2011; Samy et al., 2011) or sensor saturation (Zhang
et al., 2013). However, the strategies for detecting and isolating
mixed types of gross errors in sensor faults are rarely considered.

In fact, only a handful of researchers have addressed the GEDI
strategies for the mixed types of gross errors in dynamic chemi-
cal processes. Abu-El-Zeet et al. (2002) proposed a novel technique
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