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a  b  s  t  r  a  c  t

This paper  presents  a new  method,  based  on  Bayesian  reasoning,  for the  reconciliation  of  data  from
arbitrary  probability  distributions.  The  main  idea  is to  restrict  the joint  prior  probability  distribution  of
the  involved  variables  with  model  constraints  to  get  a joint  posterior  probability  distribution.  This  paper
covers  the  case  of  linearly  constrained  variables,  with the  focus  on  equality  constraints.  The  procedure
is  demonstrated  with  the help  of  three  simple  graphical  examples.  Because  in general  the  posterior
probability  density  function  cannot  be calculated  analytically,  it is  sampled  with  a  Markov  chain  Monte
Carlo  (MCMC)  method.  From  this  sample  the density  and  its moments  can  be estimated,  along  with  the
marginal  densities,  moments  and  quantiles.  The  method  is tested  on several  artificial  examples  from
material  flow  analysis,  using an  independence  Metropolis–Hastings  sampler.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The goal of material flow analysis (MFA) is to model and quan-
tify all flows and stocks of a system of interest. For this reason as
much information about the system as possible is collected which
comprises direct measurements when available, but more often
data taken from official statistics, reports, publications, expert esti-
mates and similar sources (Laner et al., 2014). Unfortunately these
data are often in conflict with known conservation laws such as
mass or energy balances, preventing the calculation of unknown
quantities or parameters of the model that cannot be measured
directly. The basic idea of data reconciliation (DR) is to resolve these
contradictions by statistically adjusting the collected data based on
the assumption that their uncertainty is described by a probability
density function.

DR has been widely used in chemical engineering for more than
50 years to adjust plant measurements. Most solving techniques
that have been developed in this period of time are based on a
weighted least-squares minimization of the measurement adjust-
ments subject to constraints involving reconciled, unmeasured and
fixed variables (Narasimhan and Jordache, 2000; Romagnoli and
Sanchez, 2000; Bagajewicz, 2010). The underlying main assump-
tion of this approach is that of normally distributed (Gaussian)
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measurement errors with zero mean (Johnston and Kramer, 1995).
However, in scientific models in general and in MFA  models in
particular, data is often not normally distributed. If, for instance,
a process model is correct, mass flows and concentrations cannot
take negative values, and transfer coefficients are restricted to the
unit interval.

Another example is provided by expert opinions that frequently
have to be relied on in MFA  due to scarce or missing data. They
are often modeled by uniform, triangular or trapezoidal distribu-
tions. The more detailed the expert’s knowledge about the quantity
under consideration is, the more precisely the distribution can be
modeled. If a sufficient number of measurements of the quantity
is available, one can either fit a parametric model to the measured
data or use a nonparametric model such as the empirical distri-
bution function or the kernel estimate of the probability density
function. In the following we will denote a variable as “measured”
if there is prior information on the variable of any kind, which is
not necessarily a proper measurement.

Although it was demonstrated in Crowe (1996) that the
assumption of a normal distribution is acceptable for unknown dis-
tributions having relative standard deviations smaller than 30%,
it is questionable in the context of macro-scale MFA  (e.g. region,
country) where relative standard deviations larger than 30% are
not uncommon. In addition, the normal distribution is unsuitable
to describe uncertainties with strong intrinsic asymmetry.

In the following we  propose a numerical DR procedure that
is also able to deal with data that cannot be modeled by normal
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distributions. In this paper we treat the case of linearly constrained
variables, with the focus on equality constraints; the cases of non-
linear and inequality constraints will be the subject of a subsequent
paper. We  start from the following assumptions:

1. There are N measured or unmeasured variables that take values
in a subset D ⊆ R

N .
2. The I ≤ N measured variables form an I-dimensional random

variable with known joint density. The latter is called the prior
density. The prior density can be either objective, i.e. the model
of a measurement process, or subjective, i.e. the formalization of
an expert opinion.

3. The variables are subject to linear equality constraints that define
an affine subspace S ⊂ R

N of dimension P < N.

In Section 2 it is shown that the density of the variables con-
ditional on the constraints is obtained by restricting their prior
density to the set D ∩ S and normalizing the restricted density to
1. The resulting density is called the posterior density. The prior
density plays a key role in the DR mechanism proposed below. No
matter how it is obtained, it is good practice to study its influence
on the posterior distribution.

In the case of a low-dimensional variable space, the construction
of the posterior density can be demonstrated graphically. To show
this, we present some simple examples.

Example 1.1. Let us assume that there are two measured variables
x1 and x2 with the prior density f(x1, x2) defined on D ⊆ R

2. The
constraint equation x1 = x2 defines a 1-dimensional subspace S, i.e.
a line in R

2. If the prior density is restricted to points on this line
and normalized to 1, the posterior density of x1, x2 is obtained. By
computing the marginal distributions of the posterior we  get the
posterior densities of x1 and x2, which are identical in this case. The
values of f(x1, x2) along S can be visualized by intersecting the prior
density surface with the vertical plane through S.

Fig. 1 shows an instance of this problem, with x1, x2 independent,
f1(x1) = �(x1 ; 2, 2) and f2(x2) = �(x2 ; 3, 1.5), where �(x ; a, b) is the
density of the Gamma  distribution with parameters a and b:

�(x; a, b) = xa−1 e−x/b

ba �(a)
.

Example 1.2. Let us assume that there are three measured vari-
ables x1, x2 and x3 with the prior density f(x1, x2, x3) defined on
D ⊆ R

3. The constraint equation x3 = x1 + x2 defines a 2-dimensional
subspace S, i.e. a plane in R

3. If the prior density is restricted to
points in this plane and normalized to 1, the posterior density of
x1, x2, x3 is obtained. By computing the marginal distributions of the
posterior we get the posterior densities of x1, x2 and x3, respectively.

Fig. 2 shows an instance of this problem, with x1, x2, x3 inde-
pendent, f1(x1) = �(x1 ; 2, 2), f2(x2) = �(x2 ; 3, 1.5) and f3(x3) = �(x3 ; 6,
1.7). The values of f(x1, x2, x3) are shown color-coded.

Example 1.3. Let us assume that there are two measured variables
x1, x2 and one unmeasured variable x3. The prior density of x1, x2,
x3 is defined on D ⊆ R

3, but can be written as f(x1, x2), as it does not
depend on x3. The rest of the procedure is the same as in Example
1.2. Due to the lack of an actual constraint the 2-dimensional prior
density is not restricted by the 2-dimensional subspace S, the pos-
terior densities of x1 and x2 are equal to the priors, and the posterior
of x3 is their convolution.

Fig. 3 shows an instance of this problem, with x1, x2 indepen-
dent, f1(x1) = �(x1 ; 2, 2), f2(x2) = �(x2 ; 3, 1.5) and x3 not measured.
The values of f(x1, x2) are shown color-coded. This example demon-
strates that the method can also be used to calculate unknown

variables and that it even works when the measured variables can-
not be reconciled.

In the case of a nonnormal prior density, the normalization
constant of the restricted density cannot in general be computed
analytically. In the simple examples just discussed, it can be com-
puted numerically by a single or a double integral. For larger
dimensions of S, however, numerical integration becomes cum-
bersome and time-consuming. We therefore propose to avoid
explicit calculation of the posterior density altogether by gener-
ating a random sample from the unnormalized restricted density.
This can be achieved by applying a tool that is frequently used in
Bayesian statistics (O’Hagan, 1994), namely Markov chain Monte
Carlo (MCMC) (Robert and Casella, 2004; Liu, 2004; Brooks et al.,
2011). The method and its implementation in the context of DR is
explained in Section 3. Section 4 presents the application of MCMC
to four examples in MFA. Finally, Section 5 contains our conclusions
and the outlook on further work.

2. Mathematical foundation

Let v be a column vector of N measured or unmeasured vari-
ables. Following the notation in Madron (1992), we  assume that
v is arranged such that v = (y; x), where y contains the J unmea-
sured variables and x contains the I = N − J measured variables.1

We  also may  have a vector z of M fixed (nonrandom) variables. DR
means that v is modified in such a way that it satisfies a system of
constraint equations. If all K equations are linear, the constrained
system can be written in the following form:

By + Ax + Cz = 0 or By + Ax + c = 0, (1)

where A, B, C are known matrices of dimension K × I, K × J, K × M,
respectively, and c is a column vector of dimension K × 1. We
assume that

A1. rank(B,  A) = rank(B,  A, c), meaning the system is solvable;
A2. rank(B,  A) = K, meaning the model equations are linearly inde-

pendent;
A3. rank(B) = J, meaning all unmeasured quantities are observable

(they can be calculated).

If any of these assumptions is violated the underlying prob-
lems have to be resolved before being able to proceed. One
way to achieve this goal is to apply the Gauss-Jordan elim-
ination to matrix (B, A, c). The result, known as the reduced
row echelon form (or canonical form), serves to detect contradic-
tions (A1), to eliminate dependent equations automatically (A2)
and to classify variables, in particular to identify and eliminate
unobservable unmeasured variables (A3). For detailed instruc-
tions how to proceed see Madron (1992, p. 125). There exist
alternative equation-oriented approaches for variable classifica-
tion (Romagnoli and Sanchez, 2000, p. 33), but in our opinion the
Gauss–Jordan elimination is the easiest to understand.

We make further use of the reduced row echelon form in order
to identify dependent and free variables of the system. The column
numbers of the pivot elements (leading 1 in each row) denote the
dependent variables, which can be unmeasured or measured ones.
All other variables, which have to be measured ones, are designated
as free. The outcome of this classification process depends on the
initial order of the variables. Although the posterior density itself is
unique, the choice of the free variables can affect its computation,
so the initial order of the variables should be chosen carefully (see
Section 3.2 and Example 4.4).

1 The semicolon (comma) denotes vertical (horizontal) concatenation of matrices.
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