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a  b  s  t  r  a  c  t

Models  of chemical  reaction  systems  can  be  quite  complex  as  they  typically  include  information  regarding
the reactions,  the  inlet  and  outlet  flows,  the  transfer  of species  between  phases  and  the  transfer  of heat.
This  paper  builds  on  the  concept  of reaction  variants/invariants  and  proposes  a linear  transformation
that  allows  viewing  a  complex  nonlinear  chemical  reaction  system  via  decoupled  dynamic  variables,
each  one  associated  with  a particular  phenomenon  such  as  a  single  chemical  reaction,  a specific  mass
transfer  or  heat  transfer.  Three  aspects  are  discussed,  namely,  (i)  the  decoupling  of  reactions  and  transport
phenomena  in open  non-isothermal  both  homogeneous  and  heterogeneous  reactors,  (ii) the  decoupling
of  spatially  distributed  reaction  systems  such  as  tubular  reactors,  and  (iii)  the potential  use  of  the  decou-
pling transformation  for  the  analysis  of complex  reaction  systems,  in  particular  in  the  absence  of a kinetic
model.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The (bio)chemical industry utilizes reaction processes to con-
vert raw materials into desired products that include polymers,
organic chemicals, vitamins, vaccines and drugs. If these pro-
cesses involve chemical reactions, they also deal with (i) material
exchange via inlet/outlet flows, mass transfers, convection, dif-
fusion, and (ii) energy exchange via heating and cooling. Hence,
modeling these phenomena is essential for improved process
understanding, design and operation.

Models of chemical reaction processes are typically first-
principles models that describe the state evolution (the mass, the
concentrations, the temperature) by means of balance equations
of differential nature (e.g. continuity equation, molar balances,
heat balances) and constitutive equations of algebraic nature (e.g.
equilibrium relationships, rate expressions). These models usu-
ally include information regarding the underlying reactions (e.g.
stoichiometries, reaction kinetics, heats of reaction), the trans-
fers of mass within and between phases, and the operating mode
of the reactor (e.g. initial conditions, external exchange terms,
operating constraints). A reliable description of reaction kinet-
ics and transport phenomena represents the main challenge in
building first-principles models for chemical reaction systems. In
practice, such a description is constructed from experimental data
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collected both in the laboratory and during production (Marquardt,
2008).

The presence of all these phenomena, and in particular their
interactions, complicates the analysis and operation of chemical
reactors. The analysis would be much simpler if one could some-
how separate the effect of the various phenomena and investigate
each phenomenon individually. Ideally, one would like to have true
variants, whereby each variant depends only on one phenomenon,
and invariants that are identically zero and can be discarded. Note
that some of the state variables are often redundant, as there are
typically more states (balance equations) than there are indepen-
dent source of variability (reactions, exchange terms). Hence, one
would like to have a systematic way of discarding the redun-
dant state variables, thereby reducing the dimensionality of the
model.

Asbjørnsen and co-workers (Asbjornsen and Fjeld, 1970;
Asbjornsen, 1972; Fjeld et al., 1974) introduced the concepts of
reaction variants and reaction invariants and used them for reac-
tor modeling and control. However, the reaction variants proposed
in the literature encompass more than the reaction contributions
since they are also affected by the inlet and outlet flows. Hence,
Friedly (1991, 1996) proposed to compute the extents of “equiv-
alent batch reactions”, associating the remainder to transport
processes. For open homogeneous reaction systems, Srinivasan
et al. (1998) developed a nonlinear transformation of the numbers
of moles to reaction variants, flow variants, and reaction and flow
invariants, thereby separating the effects of reactions and flows.
Later, the same authors (Amrhein et al., 2010) refined that trans-
formation to make it linear (at the price of losing the one-to-one
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property) and therefore more easily interpretable and applicable.
They also showed that, for a reactor with an outlet flow, the con-
cept of vessel extent is most useful, as it represents the amount of
material associated with a given process (reaction, exchange) that
is still in the vessel. Bhatt et al. (2010) extended that concept to het-
erogeneous G–L reaction systems for the case of no reaction and no
accumulation in the film, the result being decoupled vessel extents
of reaction, mass transfer, inlet and outlet, as well as true invari-
ants that are identically equal to zero. An extension regarding the
incorporation of calorimetric measurements into the extent-based
identification framework has been proposed recently by Srinivasan
et al. (2012).

Various implications of reaction variants/invariants have been
studied in the literature. For example, Srinivasan et al. (1998) dis-
cussed the implications of reaction and flow variants/invariants
for control-related tasks such as model reduction, state accessi-
bility, state reconstruction and feedback linearizability. On the one
hand, control laws using reaction variants have been proposed for
continuous stirred-tank reactors (Hammarstrom, 1979; Waller and
Mäkilä, 1981; Dochain et al., 2009; Favache and Dochain, 2009). The
concept of extent of reaction is very useful to describe the dynamic
behavior of a chemical reaction since a reaction rate is simply
the derivative of the corresponding extent of reaction. Bonvin and
Rippin (1990) used batch extents of reaction to identify stoichio-
metric models without the knowledge of reaction kinetics. Reaction
extents have been used extensively for the kinetic identification of
both homogeneous and G–L reaction systems using either concen-
tration (Bhatt et al., 2012) or spectroscopic (Billeter et al., 2013)
measurements.

On the other hand, the fact that reaction invariants are inde-
pendent of reaction progress has also been exploited for process
analysis, design and control. For example, reaction invariants have
been used to study the state controllability and observability of con-
tinuous stirred-tank reactors (Fjeld et al., 1974; Bastin and Lévine,
1993). Reaction invariants have also been used to automate the
task of formulating mole balance equations for the non-reacting
part (such as mixing and splitting operations) of complex processes,
thereby helping determine the number of degrees of freedom for
process synthesis (Gadewar et al., 2002). Furthermore, Waller and
Mäkilä (1981) demonstrated the use of reaction invariants to con-
trol pH, assuming that the equilibrium reactions are very fast.
Grüner et al. (2006) showed that, through the use of reaction invari-
ants, the dynamic behavior of reaction-separation processes with
fast (equilibrium) reactions resembles the dynamic behavior of cor-
responding non-reactive systems in a reduced set of transformed
variables. Aggarwal et al. (2011) considered multi-phase reactors
operating at thermodynamic equilibrium and were able to use the
concept of reaction invariants, which they labeled invariant inven-
tories, to reduce the order of the dynamic model and use it for
control.

This paper addresses the computation of variant and invariant
states for reaction systems. It presents both existing approaches
and novel techniques on a unified basis, which eases comparison.
One will see that, not only reaction-variant states can be separated
from reaction-invariant states, but a much finer separation can be
achieved. The objective of this paper is therefore to sketch new
avenues that could possibly lead to improved analysis, estimation,
control and optimization of reaction systems.

The paper is organized as follows. Section 2 presents a novel
way of computing the vessel extents of reaction and flow for open
non-isothermal homogeneous reactors. The approach is extended
to models that include a heat balance in Section 3 and to fluid–fluid
reaction systems in Section 4, while Section 5 generalizes the trans-
formation to distributed tubular reactors. The applicability of the
decoupling transformation is discussed in Section 6, while Section 7
concludes the paper.

2. Homogeneous reaction systems

This section presents the computation of the extents of reaction
and flow for a homogeneous reaction system with several inlets and
one outlet. Although the computed extents are exactly the same
as those in Amrhein et al. (2010), the computational approach is
different and provides considerable insight in the transformation.
This insight will help extend the transformation to more complex
reaction systems in Sections 3–5.

2.1. Mole balance equations

Let us consider a general open non-isothermal homogeneous
reactor. The mole balance equations for a reaction system involving
S species, R reactions, p inlet streams, and one outlet stream can be
written as follows:

ṅ(t) = NTrv(t) + Win uin(t) − ω(t)n(t), n(0) = n0, (1a)

with

rv(t) := V(t) r(t) (1b)

ω(t) := uout(t)
m(t)

,  (1c)

where n is the S-dimensional vector of numbers of moles, r the R-
dimensional reaction rate vector, uin the p-dimensional inlet mass
flowrate vector, uout the outlet mass flowrate, V and m the volume
and the mass of the reaction mixture. N is the R × S stoichiomet-
ric matrix, Win = M−1

w W̌in the S × p inlet-composition matrix, Mw

the S-dimensional diagonal matrix of molecular weights, W̌in =
[w̌1

in. . .w̌p
in

] with w̌j
in

being the S-dimensional vector of weight frac-
tions of the jth inlet flow, and n0 the S-dimensional vector of initial
numbers of moles. Note that ω(t) corresponds to the inverse of the
reactor residence time.

The mole balance Eq. (1a) holds independently of the oper-
ating conditions since the reaction rates are simply modeled as
the unknown time signals rv(t). The operating conditions such as
the concentrations c(t) and the temperature T(t) affect the reac-
tion rates through the relations rv(t) = V(t) r(c(t), T(t)), but these
dependencies are not needed at the level of Eq. (1a). If needed, the
concentrations can be computed as c(t) = n(t)/V(t), while the tem-
perature can be described by a heat balance as shown in Section 3.
Note that the signals rv(t) represent endogenous inputs.

The flowrates uin(t) and uout(t) are considered as independent
(input) variables in Eq. (1a). The way these variables are adjusted
depends on the particular experimental situation; for example,
some elements of uin can be adjusted to control the temperature
in a semi-batch reactor, or uout is a function of the inlet flows in
a constant-mass reactor. The continuity equation (or total mass
balance) is given by:

ṁ(t) = 1T
puin(t) − uout(t), m(0) = m0, (2)

where 1p is the p-dimensional vector filled with ones and m0 the
initial mass. Note that the mass m(t) can also be computed from the
numbers of moles n(t) as

m(t) = 1T
S Mw n(t), (3)

which indicates that Eqs. (1a) and (2) are in fact linearly dependent.
Hence, the continuity equation is not needed per se, but it is often
useful to express the mass as a function of the flows rather than the
numbers of moles. The volume V(t) can be inferred from the mass
and knowledge of the density � as V(t) = m(t)/�(c(t), T(t)).

The analysis that follows will use intensively the following four
integer numbers:
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