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a  b  s  t  r  a  c  t

Nonlinear  model  predictive  control  (NMPC)  is used  to  maintain  and  control  polymer  quality  at speci-
fied  production  rates  because  the polymer  quality  measures  have  strong  interacting  nonlinearities  with
different temperatures  and  feed  rates.  Polymer  quality  measures  that  are  available  from  the  laboratory
infrequently  are  controlled  in  closed-loop  using  a NMPC  to set the  temperature  profile  of the  reactors.
NMPC  results  in better  control  of polymer  quality  measures  at different  production  rates  as compared
to  using  the  nonlinear  process  model  with  reaction  kinetics  to implement  offline  targets  for  reactor
temperatures.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

There are relatively few industrial applications of nonlinear
model predictive control (NMPC) compared to linear model pre-
dictive control (LMPC) (Qin and Badgwell, 2003), and most of
these are in the field of polymerization control. Industrial NMPC
applications have been simplified to decrease the computational
burden (Bindlish and Rawlings, 2003; BenAmor et al., 2004; Negrete
et al., 2013) and results have been shown in simulation cases.
A prototypical industrial polymerization control case study has
been presented (Congalidis et al., 1989) and used to develop con-
trol strategies in simulations (Congalidis et al., 1989; Bindlish and
Rawlings, 2003). A control scheme based on successive lineariza-
tion has been used to track the optimal trajectory obtained by
solving the unconstrained, nonlinear optimization problem offline
without taking measured disturbances into account (Seki et al.,
2001). Industrial implementation and results are reported for the
controller, but the infrequent laboratory measurements are not
used in the actual feedback control loop. Problems arise in applica-
tions of models to control actual industrial polymerization reactors
due to significant process disturbances, modeling errors, and infre-
quent laboratory measurements. An important feature of industrial
processes is that the key product quality measures are available
only as laboratory measurements that have long sampling times
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with associated delays. A two-tier control scheme based on a linear
model has been used to deal with the unavailability of on-line key
product quality variable measurements (Ogunnaike, 1994). In the
two-tier system, the set points for the on-line outputs are based on
the targets for the laboratory outputs. Hence, the infrequent lab-
oratory measurements are not used in the feedback control loop.
Prior to the NMPC development for the industrial process discussed
in this paper, a two-tier system that consisted of the non-linear
process model with reaction kinetics was used to establish offline
steady-state targets for reactor temperatures to maintain labora-
tory quality measures for polymer. There was no actual feedback
control of laboratory quality measures (Fig. 1).

Dow’s first application of a commercial nonlinear model predic-
tive control technology that uses the laboratory quality measures
in the feedback control loop is presented. The industrial nonlinear
model predictive control problem has the following challenges

• Long laboratory sampling times for controlled polymer quality
attributes (0.5–1 day)

• Varying dead times (2–7 days) and gains (multiplier of 1–20) for
polymer quality attributes with respect to reactor temperatures

• Process models need to extend for extremely low feed rates
(approximately 35% of normal rates)

• Process also occasionally operates with one of the seven reactors
bypassed for maintenance

• For the first four reactors, recycle streams can only be manually
set for heating or cooling
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Fig. 1. Original control design for the process.

A linear model predictive controller (LMPC) will not be able to
achieve the process objectives because there are strong nonlinear
dependencies for polymer quality attributes with reactor temper-
atures and feed.

1.1. Process description and model

The physical details and chemistry for the industrial process are
not disclosed because of proprietary reasons. The industrial poly-
merization process consists of seven well mixed reactors in series,
where the extent of reaction is set by level and temperature in each
reactor (Fig. 2). The copolymerization of monomer and comonomer
is carried out using a catalyst to make a polymer characterized by
polymer viscosity, unreacted monomer content and byproduct con-
tent. Comonomer composition in the feed is set at a stoichiometric
excess value to minimize the unreacted monomer content in the
polymer product. The catalyst dissolved in a solvent is also fed sep-
arately to the first reactor. The flow rate and composition of the
feed streams are measured on-line along with the reactor temper-
atures and levels. Off-line laboratory measurements are made for
the polymer viscosity, unreacted monomer content and byprod-
uct content. Each reactor has a recycle stream, whose temperature
is controlled by heating or cooling it. The reactor temperature is
controlled by manipulating the recycle stream temperature.

2. Nonlinear model predictive control (NMPC)

2.1. Model development

A validated fundamental kinetic model based on first princi-
ples has been developed to capture the information in the process
output measurements. Similar process models for a well-mixed
polymerization reactor have been used for simulation of control
strategies (Congalidis et al., 1989; Bindlish and Rawlings, 2003).
The differential material balances including the rate expressions
and the energy balance coupled with the equations for the physical
phenomena constitute the dynamic process model. The following
assumptions are made for developing the mass and energy balances
in each reactor:

• Perfectly mixed tank
• Linear mixing rule for reactor density

The fundamental model has been used historically to maintain
polymer quality attributes by evaluating an off-line reactor tem-
perature profile.

2.1.1. Bounded derivative network (BDN) model
Aspen Technology, Inc.’s Aspen Non-Linear Controller (Turner

and Guiver, 2005; Naidoo et al., 2007) is used as the commercial
NMPC controller, thereby requiring development of a bounded-
derivative-network (BDN) model instead of directly using the
fundamental kinetic model. The bounded derivative network (BDN)
model framework used by the commercial NMPC controller is the
analytical integral of a neural network (Turner and Guiver, 2005)
that offers the ability to specify minimum and maximum gains on
each input–output relationship thereby circumventing the numer-
ical problems associated with standard neural networks. Initial
BDN model development was  done by using simulation results of
numerous fundamental kinetic model cases (approximately 50,000
cases) to cover the operating region of interest. These models were
then deployed on-line, and tuned by comparison with real plant
data. Over-parameterization of the BDN models was  avoided to
ensure extrapolation, and suitability for feedback control. The BDN
model first derivatives of the controlled variables with respect to
reactor temperatures and levels were examined over the operat-
ing range to ensure that they were monotonically increasing or
decreasing, to match with those from the fundamental kinetic
model. The nonlinear BDN model along with plant-model mis-
match (p) can be discretized at the controller execution frequency
(k) as

xk+1 = f (xk, uk, dk) (1)

yk = h(xk, uk, dk) + pk (2)

where x are the internal states of BDN, u are the manipulated inputs,
d are the measured disturbances, y are the measured outputs,
and p are the disturbances in output measurements. Plant-model
mismatch is attributed to disturbances in output measurements
instead of inputs or process in the NMPC formulation of Aspen
Non-Linear Controller (Naidoo et al., 2007).

2.2. NMPC design

NMPC design in Aspen Non-Linear Controller (Naidoo et al.,
2007) can be divided into following three parts
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