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a  b  s  t  r  a  c  t

Finding  all  optimal  solutions  for  a metabolic  model  is the challenge  of  metabolic  modeling,  but  there  is
no  practical  algorithm  for large  scale  models.  A two-phase  algorithm  is proposed  here  to  systematically
identify  all  optimal  solutions.  In  phase  1, the  model  is  reduced  using  the  FVA  approach;  in  phase  2,  all
optimal  solutions  are  searched  by the  addition  of a binary  variable  to convert  the model  to  an  MILP
problem.  The  proposed  approach  proved  itself  to be  a  more  tractable  method  for  large  scale  metabolic
models  when  compared  with  the  previously  proposed  algorithm.  The  algorithm  was  implemented  on  a
metabolic  model  of Escherichia  coli (iJR904)  to find  all optimal  flux  distributions.  The  model  was  reduced
from  1076  to  80 fluxes  and  from  998  to  54  equations  and  the  MILP  problem  was solved,  resulting  in
30,744  various  flux distributions.  For  the  first  time,  this  number  of  optimal  solutions  has  been  reported.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Linear programming (LP) has been successfully used to predict
flux distribution in different microorganisms by applying flux bal-
ance analysis (FBA) (Kauffman et al., 2003; Llaneras and Picó, 2008;
Orth et al., 2010; Raman and Chandra, 2009). A metabolic model
is first constructed by assuming a pseudo steady-state condition
using the biochemical reaction network of microorganisms to cal-
culate mass balance on each metabolite (compound). This usually
results in a set of underdetermined algebraic equations with the
fluxes of metabolic reactions as the unknown variables and mass
balance equations as the constraints.

A suitable objective function, such as cell growth, ATP produc-
tion, or product formation, is defined and optimized using LP (Feist
and Palsson, 2010; Kauffman et al., 2003; Varma and Palsson, 1994)
to obtain the optimal flux distribution within the cell. The optimal
solution of an LP problem lies on a vertex of the feasible solution
region. Cases occur that optimal flux distributions in the cell net-
work are not unique (Lee et al., 2000; Mahadevan and Schilling,
2003; Reed and Palsson, 2004). In other words, multiple optimal
flux distributions (solutions) may  exist that result in the same opti-
mal  value for an objective function. This creates an optimal solution
region (optimal hyperplane) enclosed by multiple optimal vertices
(Bazaraa et al., 1990; Motamedian and Naeimpoor, 2011; Taha,
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2006). Although this optimal hyperplane consists of infinite optimal
solutions, finding all multiple optimal solutions and optimal flux
distributions conventionally means finding the optimal vertices.
Each convex combination of optimal vertices results in an optimal
solution on the optimal hyperplane. Optimal vertices present the
simplest different uses of metabolism to achieve the optimal value
of objective function.

Lee et al. (2000) proposed a recursive mixed integer linear pro-
gramming (MILP) approach to find all optimal vertices of an LP
problem with the addition of two types of binary variable for each
non-zero basic variable to the LP problem and its conversion to
an MILP problem. In small metabolic networks, there are a low
number of optimal vertices, but a large number of optimal vertices
may  exist in large scale networks (especially in genome-scale) and
hence, the MILP approach can be computationally time-consuming
and intractable (Mahadevan and Schilling, 2003; Reed and Palsson,
2004). Thus, Mahadevan and Schilling (2003) introduced flux vari-
ability analysis (FVA) to study multiple optimal solutions. This
approach begins with determination of the optimal value of the
objective function by solving the LP problem. Using this solution,
the range of variability of each flux in the network can be calculated
using a series of LP problems wherein the value of the objective
function is fixed at its optimal value and each variable flux is max-
imized and subsequently minimized. FVA provides only a subset
and not necessarily all possible optimal vertices, as mentioned by
Mahadevan and Schilling (2003). In addition, for a metabolic model
with n reactions, FVA must solve 2n LP problems from scratch
(Gudmundsson and Thiele, 2010), requiring a lengthy computation
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time, especially for large scale problems. To speed up FVA,
Gudmundsson and Thiele (2010) proposed fastFVA which solves
each new problem using the data obtained in the last optimal solu-
tion instead of solving the 2n new LP problems from scratch. They
showed that fastFVA decreases running time considerably over
direct FVA implementation.

The existence of optimal flux distributions can be an indica-
tion of the flexibility of a metabolic network in the choice of an
internal state and can represent biologically meaningful different
use of biochemical reactions. Among these optimal vertices, one or
more better solutions could exist that can optimize other objec-
tive functions such as decreased genetic manipulation, decreased
by-product secretion and proposing a more appropriate metabolic
engineering plan. For example, all optimal vertices found by Lee
et al. (2000) have the same objective function value of 0, but present
different ways for carbon to pass through an Escherichia coli net-
work lacking pyruvate kinase. Among all optimal vertices, there
is a solution that gives rise to lower specific glucose uptake rate
(4.01 mmol/gDCW/h) and higher biomass yield.

Despite the important of optimal vertices, all optimal flux dis-
tributions (vertices) of a genome-scale metabolic model have not
been calculated because there is no practical algorithm to do so.
Reed and Palsson (2004) used the MILP approach to calculate a
subset of optimal growth solutions in an expanded genome-scale
network of E. coli (Reed et al., 2003) for a large number of mediums.
The number of alternate optimal solutions was  large and it was
computationally difficult to enumerate all optimal vertices; thus,
they calculated only the first 500 optimal solutions (incomplete
MILP solutions) for each environmental condition. From these, they
identified the partial flux variability which was then compared with
the results obtained using FVA. They claimed that the partial solu-
tions obtained by MILP distinguished all variable fluxes obtained
using FVA. A comparison of the results obtained using FVA and MILP
was not performed since only an incomplete set of MILP optimal
vertices were calculated.

The present study proposes a new algorithm that can prac-
tically find all optimal vertices. The algorithm consists of two
phases: problem reduction and finding optimal vertices. For prob-
lem reduction, only variable fluxes are considered and the number
of constraints is reduced as much as possible. The remaining con-
straints and variables define the optimal hyperplane. All vertices
of the optimal hyperplane are specified using a new MILP algo-
rithm that is a combination of the FVA and modified MILP (Lee
et al., 2000) approaches. The algorithm has been implemented on
a genome-scale metabolic model (Reed et al., 2003) modified for
E. coli BW25113 �pta to find all flux distributions that result in
maximum lactate production under suboptimal anaerobic growth
conditions. Castano-Cerezo et al. (2009) used experimental data
to show that the �pta strain grows at a lower rate and with a
lower biomass yield than the wild type under anaerobic growth
on glucose. Acetate (the main by-product of wild type) and ethanol
were produced at lower rates in the new strain than in the wild
type strain. The �pta strain produced excessive amounts of lactate
instead of acetate and ethanol. In the present study, the variable
fluxes and all possible optimal flux distributions were determined
when the mutants produced maximum rates of lactate to enumer-
ate the various pathways that cause the maximum production of
lactate instead of acetate.

2. Materials and methods

2.1. Genome scale model

The genome scale stoichiometric model (iJR904) used in
this study for E. coli MG1655 includes 988 metabolites, 1020

reactions, 904 genes and 2 cytosolic and extracellular compart-
ments (Reed et al., 2003). Upper bound of all intracellular reaction
fluxes was limited to 1000 mmol/gDCW/h and lower bound of
intracellular reversible and irreversible reaction fluxes was limited
to −1000 mmol/gDCW/h and zero, respectively.

The model was modified to accommodate genetic differences
between MG1655 and BW25113. Since the araBAD, rhaBAD, and
lacZ genes are absent from the BW25113 strain, the associated
metabolic reactions were removed (Joyce et al., 2006). The upper
limits of the glucose and oxygen uptake rates were set to 10 and
0 mmol/gDCW/h, respectively, to simulate anaerobic growth on
minimal glucose medium. The secretion of hydrogen, a product of
E. coli BW25113, was  added to the model. Hydrogen was allowed
to freely leave the network with a maximum production rate of
1000 mmol/gDCW/h.

In the first in silico experiment, biomass formation was  used as
the objective function to be maximized. Maximal lactate secretion
was calculated for suboptimal conditions for a fixed growth rate of
95% optimal growth. FVA was used to determine the variable fluxes
and range of variability for maximal lactate secretion and optimal
solutions were sought using the new algorithm. Calculations were
made in MATLAB software using the COBRA toolbox. MALTAB was
linked to GAMS/CPLEX to solve LP and MILP problems.

2.2. Method

A metabolic network is defined by a set of metabolites (com-
pounds) and a set of biochemical reactions interconnecting these
metabolites. After reconstruction of a metabolic network (Thiele
and Palsson, 2010), the stoichiometric coefficients of the reactions
are determined. The stoichiometric coefficients of a metabolic net-
work with m metabolites and n reactions can be presented by a
stoichiometric matrix (S) in which the rows and columns corre-
spond to the metabolites and reactions, respectively. Thus, Si,j array
of the stoichiometric matrix is the stoichiometric coefficient for
metabolite i with respect to reaction j. If a metabolite is formed by
the reaction j, the coefficient has a positive sign; if it is consumed
by the reaction j, the stoichiometric coefficient appears with a neg-
ative sign. All other rows (corresponding to metabolites that do not
participate in the reaction j) are zero.

Once the stoichiometric matrix has been determined, mass
balances for the intracellular metabolites (assuming a pseudo-
steady-state condition) can be represented by a set of linear
equations (Edwards et al., 2002; Kauffman et al., 2003; Llaneras
and Picó, 2008; Raman and Chandra, 2009) as in Eq. (1):

S · r = b (1)

where r is the flux vector and b is the right-hand side vector deter-
mined by known reaction fluxes. This set of algebraic equations is
usually underdetermined and, therefore, infinite solutions (feasible
solution region) exist. The feasible solution region is a convex poly-
hedral space due to the linearity of equations (Fig. 1). In order to
obtain a unique solution within this feasible region, FBA can be used
by defining an objective function, such as growth or product for-
mation, and optimizing it to achieve an optimal solution (Kauffman
et al., 2003). The LP formulation of the metabolic model shown in
Eq. (2):

Max  Z = cr

Such that S · r = b

rmin ≤ r ≤ rmax

(2)

where c is the objective function vector and rmax and rmin are the
vectors containing the upper and lower limits of the variable fluxes,
respectively. FBA results in an optimal solution that always lies on a
vertex of the feasible solution region. This optimal vertex presents
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