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a  b  s  t  r  a  c  t

The  adaptive  switching  structure  approach  is  generalized  from  single-stage  problems  and  single-shooting
to  multi-stage  problems  and multiple-shooting.  This  generalization  is based  on  previous  work  on  the
exploitation  and  detection  of  the  control  switching  structure  and  wavelet-based  control  grid  refinement
for  single-stage  problems.  Here,  single-shooting  is employed  to transcribe  the  multi-stage  optimal  con-
trol problem  (OCP)  into  a nonlinear  programming  problem.  The  proposed  multi-stage  formulation  is also
capable  to represent  the  transcription  of single-stage  OCP  stemming  from  multiple-shooting.  Thus,  the
previously  reported  adaptive  multiple-shooting  approach  is  extended  by  an  adaptation  of  the  switch-
ing  structure.  Finally,  a new  stopping  criterion  is introduced  that  measures  the  intermediate  constraint
violation  at the  optimal  solution.

The  proposed  adaptive  switching  structure  detection  is  illustrated  for  a multi-stage  and  a  multiple-
shooting  problem  using  the  Williams–Otto  semi-batch  reactor.  A  solution  of  user-specified  accuracy  in
the objective  and  the  path-constraints  can  be obtained  using  only  few decision  variables.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The optimal operation of chemical processes often requires the
solution of multi-stage control problems. The scientific and indus-
trial interest in multi-stage optimal control problems (OCP) has
been increasing steadily in process systems engineering (Barton
and Pantelides, 1994; Vassiliadis et al., 1994a,b; Avraam et al., 1998;
Bonvin, 1998; Biegler and Grossmann, 2004). Generally, multi-
stage OCP can be divided into two classes. The first class assumes
that the number of stages the system goes through is unknown,
while the second class requires a priori knowledge of the number
and type of stages (Avraam et al., 1998). The first class often con-
sists of multiple stages, where each stages is described by a different
DAE system. The stages are connected by state transitions, which
are triggered by some logical constraint. These systems are also
referred to as non-smooth systems.1 Typically, the non-smooth sys-
tems of interest are continuous in the state but with discontinuous
right-hand side. These systems are modeled using if-else-clauses in
the modeling environments. Technical examples for non-smooth
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1 For a detailed classification of non-smooth systems the reader is referred to the
work of Leine and Nijmeijer (2004).

systems include the model of a reactive three-phase batch distil-
lation column by Brüggemann et al. (2004) or just the model of a
bouncing ball (Hannemann-Tamás et al., 2014).

Typical examples of the second class of multi-stage problems
include the operation of batch and semi-batch reactors, which rely
on recipe-driven operation (Bonvin, 1998). Recipes are subdivided
hierarchically into process stages, process operations and process
actions (ISA, 2010). These operational modes usually result in a
planned sequence of chemical or physical changes of the state of
material being processed. Thus, a batch process normally comprises
various stages, e.g., a batch reactor is first cleaned, then charged, the
reaction is enabled, and the reactor is finally drained. Depending on
the process, the reaction can be further subdivided into additional
stages, e.g., adding catalyst and reactants separately, withdrawing
material, heating and cooling (Bonvin, 1998). Thus, industrial semi-
batch processes always result in multi-stage OCPs with a known
number of stages. An example of particular industrial interest is
the optimal control of (fed-batch) bioreactors (Balsa-Canto et al.,
2000; Ramkrishna, 2003), which are used to manufacture specialty
chemicals, pharmaceuticals, and bio-chemicals. Even continuous
processes can experience transient operational stages (Barton and
Pantelides, 1994) such as multiple grade changes. Further, chem-
ical processes may  include different modes of operation requiring
different process models (e.g., adsorption, regeneration, pressur-
ization, in a dynamic cycle (Nilchan and Pantelides, 1998)). For
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these applications, each stage is described by separate state vari-
ables and models, which are linked by incorporating transitions
between those dynamic stages (Biegler and Grossmann, 2004). A
multi-stage OCP may  also arise in a control context, e.g., if an infinite
horizon problem is formulated (Würth and Marquardt, 2014).

This paper deals with the formulation and optimization of multi-
stage OCPs arising in process engineering with a known number of
stages. The case of state transition networks is not discussed in this
work, however; the algorithm presented could be also generalized
for this particular case. The formulation of a multi-stage OCP with
a given number of stages requires setting up a sequence of oper-
ational modes (e.g. process stages, process operations and process
actions) with a varying set of controls, objectives, constraints, and
even model equations with complicated state transitions between
the stages. Here, the stages of a multi-stage OCP are defined as
either physical stages,  which are either enforced by state transi-
tion networks of the underlying nonlinear process, or by algorithmic
stages, which are due to the formulation of the OCP (Schlegel and
Marquardt, 2006a). To the best of author’s knowledge, multi-stage
OCP in the literature consists of either physical or numerical stages.
In this work, a generalized formulation that simultaneously com-
prises both physical and numerical stages is presented which results
in a nested multi-stage problem.

Typically, multi-stage OCPs are solved after approximating the
continuous problem by a finite-dimensional optimization problem
by some kind of transcription. The control profiles are typically
parameterized uniformly relying on a pragmatically chosen grid.
However, it is important to note that in such an approach the
computed solution may  not properly resolve the qualitative struc-
ture of the optimal control profile (switching structure), which is
determined by a series of (continuous) arcs delimited by discon-
tinuous jumps (Bryson and Ho, 1975). Localizing the switching
points between continuous arcs exactly not only improves the solu-
tion accuracy but, more importantly, increases process insight. For
example, this insight allows applying NCO (necessary conditions
of optimality) tracking control (Srinivasan et al., 2003a) only using
the solution structure determined by off-line optimization (Kadam
et al., 2007). A straightforward approach allows to optimize the
location of the grid points for a fixed number of control intervals.
Cuthrell and Biegler (1987) and von Stryk (1995) have applied this
idea in the context of full discretization methods. Vassiliadis et al.
(1994a) have used a similar concept, but apply it in the context of
single shooting. The major drawback of such relocation methods is
that the resulting nonlinear programming problem (NLP) tends to
be strongly nonlinear and tough to solve. In particular, even a linear
optimal control problem results in an NLP after parameterization if
relocation methods are used. This drawback can be compensated by
introducing a bi-level approach, where the optimization is solved
on a fixed grid in an inner loop, while the lengths of the discre-
tization intervals are determined in an outer loop (Tanartkit and
Biegler, 1997).

To the best of authors’ knowledge, multi-stage OCPs cannot be
tackled directly by commercial software packages (e.g. gPROMS,2

Aspen Custom Modeler3).
In this paper, we generalize the adaptive switching structure

approach introduced by Schlegel and Marquardt (2006b) for single-
stage to multi-stage problems. This generalization is based on
previous work on the exploitation and detection of the control
switching structure (Schlegel and Marquardt, 2006a) and wavelet-
based control grid refinement (Schlegel et al., 2005) for single-stage
problems. Here, we employ direct single-shooting (Sargent and
Sullivan, 1978) to transcribe the continuous dynamic multi-stage

2 http://www.psenterprise.org/.
3 http://www.aspentech.org/.

OCP into an NLP. Further, the proposed multi-stage formulation is
capable to represent the transcription of a single-stage OCP into
an NLP by multiple-shooting4 (Morrison et al., 1962; Bock and
Plitt, 1984). Thus, we also extend the adaptive multiple-shooting
approach introduced by Assassa and Marquardt (2014) by the
adaptive switching structure approach in this paper. Further, we
introduce a new measure to evaluate the intermediate constraint
violation (ICV), which can be used as a stopping criterion for both
refinement approaches.

The adaptive switching structure approach of Schlegel and
Marquardt (2006b) generalized to multi-stage and multiple-
shooting problems comprises two steps: first, a problem-
dependent discretization is generated using the wavelet-based
control grid refinement (Schlegel et al., 2005; Assassa and
Marquardt, 2014) to avoid an unnecessarily fine control grid. The
iterative refinement procedure is terminated if the detected con-
trol switching structure for all stages remains unchanged in two
consecutive iterations. In the second step, the multi-stage prob-
lem is reformulated to incorporate the detected switching structure
(Schlegel and Marquardt, 2006a) by introducing a second layer of
stages, the so-called algorithmic stages.  In particular, every physi-
cal stage is subdivided by some algorithmic stages.  Each algorithmic
stage has the same type of controls, objective, constraints and model
as its associated physical stage. These algorithmic stages allow to
capture the control switching structure behavior with only few
optimization parameters combining control grid adaptation and
switching structure detection. The control grid of the reformulated
problem is again refined using wavelet-based grid refinement until
a satisfactory solution quality is obtained. The stopping criterion
either relies on a measure of the ICV and/or a change in the objective
function. A change in the switching structure leads to a reform-
ulation of the underlying problem with subsequent control grid
refinement.

We illustrate adaptive control grid refinement and adaptive
switching structure detection for a multi-stage problem and a
multiple-shooting strategy using the Williams–Otto semi-batch
reactor (Williams and Otto, 1960). The proposed algorithm suc-
cessfully detects the control switching structure in both cases. A
solution of user-specified accuracy in the objective and the path-
constraints can be obtained using only few decision variables.

The paper is structured as follows. Section 2 first introduces the
multi-stage problem formulation and the necessary conditions of
optimality. The theoretical background of the suggested approach
and the applied solution method are presented in Section 3. It con-
cludes with a summary of the unified automatic structure detection
approach. In Section 4, we  give an overview on the solvers used
and the implementation of the optimization strategy. Section 5
introduces an exemplary multi-stage and single-stage problem of
the Williams–Otto semi-batch reactor. The multi-stage problem
is solved using single-shooting, while the single-stage problem is
discretized by the multiple-shooting strategy. Both examples are
analyzed and compared to an equidistant discretization of the con-
trols with respect to performance and solution accuracy. Finally,
in Section 6, we  conclude the paper with a summary and future
perspectives.

2. Problem formulation

First, the multi-stage OCP is formulated and generalized by
introducing a second level of stages, so-called algorithmic stages.
Second, the theoretical framework to reformulate the multi-stage

4 Multiple-shooting explicitly addresses OCP problems embedding unstable ini-
tial  value problems, which often cannot be solved successfully by single-shooting.

http://www.psenterprise.org/
http://www.aspentech.org/


Download	English	Version:

https://daneshyari.com/en/article/172307

Download	Persian	Version:

https://daneshyari.com/article/172307

Daneshyari.com

https://daneshyari.com/en/article/172307
https://daneshyari.com/article/172307
https://daneshyari.com/

