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a  b  s  t  r  a  c  t

We  address  a central  theme  of  empirical  model  building:  the  incorporation  of  first-principles  informa-
tion  in  a data-driven  model-building  process.  By  enabling  modelers  to  leverage  all  available  information,
regression  models  can  be constructed  using  measured  data  along  with  theory-driven  knowledge  of
response  variable  bounds,  thermodynamic  limitations,  boundary  conditions,  and other  aspects  of  system
knowledge.

We expand  the  inclusion  of regression  constraints  beyond  intra-parameter  relationships  to relation-
ships  between  combinations  of  predictors  and  response  variables.  Since  the  functional  form  of these
constraints  is  more  intuitive,  they  can  be  used  to reveal  hidden  relationships  between  regression  param-
eters  that are  not  directly  available  to the modeler.  First,  we describe  classes  of  a  priori  modeling
constraints.  Next,  we propose  a semi-infinite  programming  approach  for the  incorporation  of  these  novel
constraints.  Finally,  we detail  several  application  areas  and  provide  extensive  computational  results.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Often, modelers must decide between (a) utilizing first-
principles models, intuition, etc. or (b) constructing surrogate
models using empirical data. We  propose a combination of
these two techniques that augments empirical modeling with
first-principles information, intuition, and other a priori system
characterization techniques to build accurate, physically realiz-
able models. By doing this, we leverage the synergistic effects of
empirical data, first-principles derivation, and intuition. Observed
data points are often sampled at a premium, incurring costs
associated with computational time, raw materials, and/or other
resources. Frequently, additional insights provided by system
knowledge, intuition, or the application of first-principles anal-
ysis are available without additional computational, financial, or
other costly resource requirements. Knowledge of a less empirical
nature, including limits on the response variables; known relation-
ships between response and predictor variables; and relationships
among responses, can be applied in conjunction with experimen-
tal data. For example, ensuring the nonnegativity of a modeled
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geometric length, enforcing a sum-to-one constraint on modeled
chemical fractional compositions, and ensuring that derivative
bounds obey thermodynamic principles are all practical applica-
tions of beneficial nonempirical insights.

We aim to build regression models (U):

(U) min
ˇ∈A

g(ˇ; x1, x2, . . .,  xN, z1, z2, . . .,  zN)

that determine m regression parameters (coefficients)  ̌ that min-
imize a given loss function g (e.g., squared error, regularized error,
or an information criterion) over a set of original regression con-
straints A  based on data points (xi, zi), i = 1 . . . N. For conciseness,
we will refer to g(  ̌ ; x1, x2, . . .,  xN, z1, z2, . . .,  zN) as g(ˇ).

To formally introduce insightful nonempirical information, we
would like to enforce the following constraint on a regression prob-
lem:

�(X)  :=
{

 ̌ ∈ R
m : f

[
x, ẑ(x; ˇ)

]
≤ 0, x ∈ X

}
(1)

where function f is a constraint in the space of the predictor(s) x and
modeled response(s) ẑ,  and X  is a nonempty subset of R

n. Eq. (1) can
be used to reduce the feasible region A  for any general regression
analysis formulation: linear least squares, nonlinear least squares,
regularized regression, best subset methods, and other characteri-
zation techniques. In fact, these constraints can be used alongside
current gray-box or semi-physical modeling techniques (Nelles,
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2001; Pearson and Pottmann, 2000), where a balance between
first principles knowledge and empirical data is desirable – typ-
ically, where model structure is chosen from system knowledge
and parameters are selected to match sampled data.

By incorporating system knowledge beyond sampled data, we
refine the feasible domain as the intersection of A  and � and solve
problem (C):

(C) min
ˇ∈A∩�(X)

g(ˇ)

where � is defined over the domain x ∈ X  while the original regres-
sion problem (U) exists in the space  ̌ ∈ A.

Rao (1965) and Bard (1974) were the first to use a priori parame-
ter relationships in regression through simple equality constraints.
Recently, the use of such relationships has expanded to include
inequality constraints in the space of the regression parameters, a
case that arises more naturally in practice (Knopov and Korkhin,
2011). Inequality relationships between regression parameters
have been applied to both linear and nonlinear least squares prob-
lems in the fields of statistics (Judge and Takayama, 1966; Liew,
1976), economics (Thompson, 1982; Rezk, 1976), and engineering
(Gibbons and McDonald, 1999). Most notably, Korkhin has inves-
tigated the properties of simple parameter restrictions (Korkhin,
1985, 2002, 2005), nonlinear parameter restrictions (Korkhin, 1998,
1999), and, more recently, the formulation of inequality constraints
with deterministic and stochastic right-hand sides (Korkhin, 2013).

Previous work employs a priori knowledge to reveal relation-
ships between subsets of regression parameters that serve to
restrict their range. To the best of our knowledge, there has been
no investigation into the enforcement of a priori information that
directly relates predictors to regressors. We  aim to use these novel
relationships between predictors and regressors to restrict the fea-
sible region in the original problem space.

Since previous applications of constrained regression have been
restricted to the parameter space  ̌ of the regression problem,
these techniques are inherently specific to the functional form of
the response. For example, consider a quadratic response model,
ẑ(x) = ˇ0 + ˇ1 x + ˇ2 x2, and the a priori insight ˇ1 ≥ ˇ2. If an expo-
nential function, ẑ(x) = ˇ0 + ˇ1 exp(x), produces a more favorable
fit, there is no standard way to translate constraints from the
quadratic to the exponential model. On the other hand, enforcing
a lower bound on the response, ẑ(x) ≥ 0 ∀x, rather than the ˇ-
space, produces a constraint that is independent of the model’s
functional form. Additionally, system insight in the x-domain may
be more intuitive and readily available than knowledge of a unique
and contrived regression model’s functional form.

A complication arises from the realization that Eq. (1) is valid
for the full problem space and, therefore, needs to be enforced
for every point x ∈ X, i.e.,  at infinitely many points. Semi-infinite
programming (SIP) problems are optimization models that have
finitely many variables and infinitely many constraints (Reemtsen
and Rückmann, 1998). These problem formulations are common in
the fields of approximation theory, optimal control, and eigenvalue
computations, among others. In each case, one or more parametric
constraints result in one constraint for each value of an optimiza-
tion parameter (in this case x) that varies within its given domain
(Hettich and Kortanek, 1993; Reemtsen and Rückmann, 1998).

The first significant work on SIP, by John (1948), provides nec-
essary and sufficient conditions for the solution to a semi-infinite
program. Initially, SIP research focused on linear and convex non-
linear semi-infinite programming (Hettich and Kortanek, 1993;
Reemtsen and Rückmann, 1998; Goberna and López, 2002).
More recently, advances in global optimization, including BARON
(Tawarmalani and Sahinidis, 2005), have made the solution of gen-
eral nonconvex SIP problems more tractable (Chang and Sahinidis,
2011). In problem (C), the objective is often convex, as is the case for

linear least squares regression. However, the feasible region – as we
show in Section 4 – is generally nonlinear and nonconvex. The key
to solving an SIP problem, independent of the solution method, is
the optimization of max

x∈X
f
[
x, ẑ(x; ˇ)

]
to locate the maximum vio-

lation. This subproblem is significant because  ̌ ∈ �(X) if and only
if max

x∈X
f
[
x, ẑ(x; ˇ)

]
≤ 0 (Reemtsen and Görner, 1998).

To assess the benefits afforded by augmenting standard regres-
sion problems (U) with a priori information as in (C), we utilize
the test platform ALAMO (Cozad et al., 2014). ALAMO is a software
package designed to generate models that are as accurate and as
simple as possible. This combination of accuracy and simplicity is
well-suited for regression.

The remainder of the paper is organized as follows. In Section 2,
we outline the modeling and sampling methods of the ALAMO test
platform. We propose a methodology to solve problem (C) in its
most general form in Section 3. In Section 4, we detail classes of
applications of domain-constrained regression using our solution
strategy: restricting individual and multiple responses, constrain-
ing response model derivatives, and expanding or contracting the
enforcement domain. In Section 5, we demonstrate the efficacy of
our approach using numerical examples. Next, in Section 6, we
present extensive computational results demonstrating the effec-
tiveness of the proposed methods. Finally, we offer conclusions in
Section 7.

2. ALAMO

ALAMO is a learning software that identifies simple, accurate
surrogate models using a minimal set of sample points from black-
box emulators such as experiments, simulations, and legacy code.
ALAMO initially builds a low-complexity surrogate model using
a best subset technique that leverages a mixed-integer program-
ming formulation to consider a large number of potential functional
forms. The model is subsequently tested, exploited, and improved
through the use of derivative-free optimization solvers that adap-
tively sample new simulation or experimental points. For more
information about ALAMO, see Cozad et al. (2014).

In this section, we  detail relevant ALAMO model-building meth-
ods as applied to parametric regression. The functional form of a
regression model is assumed to be unknown to ALAMO. Instead,
ALAMO poses a simple set of basis functions, e.g.,  x, x2, 1/x,  log(x),
and a constant term. Once a set of potential basis functions is
collected, ALAMO attempts to construct the lowest complexity
function that accurately models sample data. To do this, a mixed-
integer quadratic program (MIQP) is solved to select basis functions
for increasing model complexity. In a solution of the MIQP, the sim-
ple basis functions, Xj(x), j ∈ B, are active when the corresponding
binary variable yj = 1 and inactive when yj = 0. The size of the model,
specified by a parameter T corresponding to the number of active
binary variables, is increased until a goodness-of-fit measure, such
as the corrected Akaike Information Criterion (Hurvich and Tsai,
1993), worsens with an increase in model size. As an example, using
the list of basis functions given above, the MIQP is as follows:

(M) min  g(ˇ) =
N∑

i=1

(
zi −
[

ˇ0 + ˇ1 x + ˇ2 x2 + ˇ3
1
x
+ ˇ4 log(x)

])2

s.t. ˇlo
j

yj ≤ ˇj ≤ ˇup
j

yj j = 0, . . .,  4

y0 + y1 + y2 + y3 + y4 = T

yj ∈ {0, 1} j = 0, . . .,  4

While a typical basis set is often far larger, this simple example
illustrates the form of the objective g(ˇ) and original constraint set

 ̌ ∈ A  before intersection with new a priori constraints �(X).
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