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a  b  s  t  r  a  c  t

This  paper  proposes  a  combined  canonical  variate  analysis  (CVA)  and  Fisher  discriminant  analysis  (FDA)
scheme  (denoted  as CVA–FDA)  for  fault  diagnosis,  which  employs  CVA  for  pretreating  the data  and  sub-
sequently  utilizes  FDA  for  fault  classification.  In  addition  to  the improved  handling  of  serial  correlations
in  the  data,  the  utilization  of CVA  in  the  first  step  provides  similar  or reduced  dimensionality  of  the
pretreated  datasets  compared  with  the  original  datasets,  as  well  as  decreased  degree  of overlap.  The
effectiveness  of the  proposed  approach  is demonstrated  on  the  Tennessee  Eastman  process.  The simu-
lation  results  demonstrate  that (i)  CVA–FDA  provides  better  and  more  consistent  fault  diagnosis  than
FDA,  especially  for data  rich  in  dynamic  behavior;  and  (ii)  CVA–FDA  outperforms  dynamic  FDA in both
discriminatory  power  and computational  time.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Fault diagnosis, which is the determination of the root cause of
faults, is important for efficient, safe, and optimal operation of an
industrial process. The task of diagnosing the faults can be rather
challenging when there are a large number of process variables that
are highly correlated due to the process dynamics and controllers.

For fault diagnosis based on data-driven methods, data collected
from the plant during specific faults are classified into multiple
classes, where data in each class indicates a particular fault. Among
the methods for classifying data of multiple classes, Fisher dis-
criminant analysis (FDA) determines a set of projection vectors
that minimize the scatter within each class while maximizing the
scatter between the classes. While FDA has been used for decades
in pattern classification (Duda et al., 2001), its application for ana-
lyzing chemical process data began to be explored only in the last
15 years (Chiang et al., 2000, 2001; He et al., 2005).

Due to process dynamics, observations are often serially corre-
lated, that is, the observations at one time instant are correlated
with observations at past time instants. In order to handle serial
correlations in the data, the FDA method for fault diagnosis can be
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extended by augmenting the observation vector with lagged val-
ues of process variables. This method is referred to as dynamic FDA
(DFDA) (Chiang et al., 2001), which enables dynamic information to
be used in classifying the observations. Since the information con-
tained in a single observation vector is a subset of the information
contained in the augmented observation vector, the augmented
vector approach can lead to improved fault diagnosis. The incor-
poration of time lags for autocorrelated variables benefits the fault
classification by decreasing the degree of overlap among the aug-
mented data (Chiang et al., 2001). However, data stacking in DFDA
significantly increases the dimensionality of the problem, propor-
tional to the number of lags included. Another drawback is that
more data may  be required to determine the mean vector and
covariance matrix to achieve the same level of accuracy for each
class. As a result, DFDA typically has high computational require-
ments that hinder its application to large-scale systems. This study
will focus on developing a scheme that can not only better cap-
ture the dynamic information in the data but also has reduced
computational cost.

Some past studies of fault diagnosis have employed dimen-
sionality reduction techniques followed by discriminant analysis.
Raich and Ç inar (1995, 1996) presented a multivariate statistics
approach for diagnosing abnormal behaviors by following princi-
pal component analysis (PCA) with discriminant analysis. A later
study (Chiang, 2001) incorporated PCA and FDA for diagnosing both
known and unknown faults. Employing partial least squares (PLS)
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for discrimination has been investigated extensively, such as in
Chiang et al. (2000) and Barker and Rayens (2003). In general, PCA-
and PLS-based discriminant analysis are limited in their ability to
quickly diagnose faults for process data that contain significant seri-
ally correlation, because the underlying PCA and PLS approaches do
not generate the most accurate dynamic models, even when lagged
values of process variables are augmented in the observation vec-
tors (Chiang et al., 2001; Negiz and Ç inar, 1997a; Russell et al., 2000;
Ku et al., 1995; Ricker, 1988).

Canonical variate analysis (CVA) is a dimensionality reduction
technique in multivariate statistical analysis which utilizes state-
space representations. CVA maximizes the correlation between the
combinations of the ‘past’ values of the process inputs and outputs
and the combinations of the ‘future’ values of the outputs of the
system (Larimore, 1997). This method takes serial correlations into
account by employing this different augmented vector technique
during the dimensionality reduction procedure.

Negiz and Ç inar (1997a) discuss and demonstrate the higher
accuracy of dynamic models constructed by CVA compared to
dynamic PCA through application to numerical examples. CVA has
been observed to have better numerical stability and parsimony
than alternative identification methods, including balanced real-
ization (BR), numerical algorithms for state space subspace system
identification (N4SID), and partial least squares (PLS), in many case
studies (Juricek et al., 1998; Negiz and Ç inar, 1997b; Simoglou et al.,
1999, 2002).

This article describes a combined CVA–FDA fault diagnosis
scheme that employs CVA for pretreating the data and subse-
quently utilizes FDA for classifying faults. Employing CVA in the first
step improves handling of serial correlations in the data, decreases
the overlap among the data classes, and enables the pretreated
datasets to have similar or even fewer dimensions compared with
the original datasets.

The rest of this article is organized as follows. Section 2 provides
some background knowledge on CVA, FDA, and DFDA. Section 3
elaborates the proposed CVA–FDA approach for fault diagnosis. The
effectiveness of the CVA–FDA approach is demonstrated with the
Tennessee Eastman process in Section 4, followed by conclusions
in Section 5.

2. CVA and FDA

The relevant methods for fault diagnosis and classification are
reviewed in this section. CVA is introduced as the dimensionality
reduction method, followed by a brief review of FDA, which serves
as the basis of the fault diagnosis.

2.1. CVA

CVA is a dimensionality reduction technique in multivariate
statistical analysis which maximizes the correlation between two
selected sets of variables. Hotelling initially proposed the CVA con-
cept for multivariate statistical analysis, which was  employed to
system identification by Akaike for autoregressive-moving-average
model (ARMA) models (Larimore, 1997; Akaike, 1974). The CVA
method was further developed for identifying state-space models
by Larimore (1997).

Given time series output data yt ∈ Rmy and input data ut ∈ Rmu ,
the linear state-space model is (Russell et al., 2000)

xt+1 = Axt + But + vt (1)

yt = Cxt + Dut + Evt + wt (2)

where xt is a state vector, vt and wt are independent white noise
processes, and A, B, C, D, and E are coefficient matrices.

The CVA algorithm uses the concept of past and future vectors. At
a particular time instant t ∈ (1, . . .,  n), the past vector pt containing
the past outputs and inputs is

pt = [yT
t−1, yT

t−2, . . .,  uT
t−1, uT

t−2, . . .]
T

(3)

and the future vector ft comprising of the outputs in the present
and future is

f t = [yT
t , yT

t+1, . . .]
T

(4)

For an assumed state order k, the CVA algorithm computes a
constant matrix Jk that linearly relates the past vector pt to the
memory mt ∈ Rk,

mt = Jkpt (5)

where the term “memory” is used instead of “state” since the vec-
tor mt may  not necessarily contain all of the information in the past
(Larimore, 1990). The optimal matrix Jk is calculated via the singu-
lar value decomposition (SVD) to minimize the average prediction
error

E{||f t − f̂ t ||2�† } = E{(f t − f̂ t)�
†(f t − f̂ t)} (6)

where E is the expectation operator, f̂ t is the prediction of ft, and the
weighing �† is the pseudo-inverse of �.  Selecting � = ˙ff nearly
maximizes the likelihood function for the state-space system (1)
and (2) (Larimore, 1990), where ˙ff is the covariance of f t.

The SVD algorithm calculates the optimal value for Jk as

˙−1/2
pp ˙pf ˙−1/2

f f
= U˙VT (7)

where  ̇ is the diagonal matrix of nonnegative singular values with
descending order, U and V are matrices of the right and left singular
vectors, and the matrices Jk are obtained by

Jk = UT
k˙−1/2

pp (8)

where Uk contains the first k columns of U in (7).

2.2. FDA

For fault diagnosis, data collected from the process during spe-
cific faults are categorized into classes, where each class contains
data indicating a particular fault. FDA is widely used as a technique
of pattern classification. The basic idea of FDA is to determine a set
of projection vectors that optimize the Fisher criterion (He et al.,
2005). A brief mathematical description is provided here.

Given n observations of m measurement variables, an n by m
matrix X is constructed to stack the training data for all classes,
and the ith row of X is represented as the column vector xi, the
total-scatter matrix is given by (Duda and Hart, 1973; Chiang et al.,
2004)

St =
n∑

i=1

(xi − xmean)(xi − xmean)T (9)

where xmean indicates the total mean vector, elements of which
are the means of the columns of X. Define Xj as the set of vectors xi
belonging to the class j, then the within-scatter matrix for class j is
defined by

Sj =
∑
xi∈Xj

(xi − xj,mean)(xi − xj,mean)T (10)
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