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a  b  s  t  r  a  c  t

Discrete  ill-posed  problems  are often  encountered  in engineering  applications.  Still, their  sound  analysis
is not  yet  common  practice  and  difficulties  arising  in the determination  of uncertain  parameters  are  typ-
ically  not  assigned  properly.  This  contribution  provides  a tutorial  review  on  methods  for  identifiability
analysis,  regularization  techniques  and  optimal  experimental  design.  A guideline  for  the  analysis  and  clas-
sification  of  nonlinear  ill-posed  problems  to  detect  practical  identifiability  problems  is  given.  Techniques
for  the  regularization  of experimental  design  problems  resulting  from  ill-posed  parameter  estimations
are  discussed.  Applications  are  presented  for three  different  case  studies  of  increasing  complexity.
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1. Introduction

Typical causes of poor or even no identifiability in nonlinear
(and linear) system identification are: over-parameterized process
models, model structures not matching the system, limited exper-
imental information (either in quantity or quality), correlations in
parameters or experimental data, parameters with little or null
influence on observed variables and inappropriate initial param-
eter guesses (Bard, 1974; Bates and Watts, 1988; Franceschini
and Macchietto, 2008; Vajda et al., 1989; Walter and Pronzato,
1996). This generates problems in parameter estimation (PE), e.g.,
multiple, meaningless, inaccurate or unstable solutions, and/or
convergence and numerical problems in the solver. Those problems
lead for instance, to a model with poor extrapolation properties
or parameters with large variance or uncertainty (the so called
non-identifiable parameters).

According to Hadamard (1923), a well-posed problem means
existence and uniqueness of its solution, as well as continuous
dependence of the solution on the data. In other words, if the solu-
tion does not exist, or if it is not unique, or if a small change of the
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experimental data produces a large perturbation of the solution,
the problem is ill-posed (Bertero et al., 1988; Hansen, 1998, 2007;
Hoerl and Kennard, 1970a; Marquardt, 1970). Continuity is related
to the requirement of stability or robustness of the solution (Bertero
et al., 1988). However, this condition is necessary for stability,
but it is not sufficient as especially for discrete ill-posed problems
(coming from discrete available data or discretization of ill-posed
problems) lack of robustness against noise is usually evidenced
(Bertero et al., 1988). Accordingly in PE, besides the strong rela-
tionship between identifiability and ill-posedness of a problem,
the error propagation from data to the solution should also be
addressed.

An analysis of the ill-posedness of a PE problem could be related
to the ill-conditioning and thus, to the numerical stability and
linear dependencies of a specific matrix, in the sense that noisy
measurement data may  lead to significant misinterpretations of
the solution (Kaltenbacher et al., 2008). In linear estimation (e.g.
the linear regression model y = X  ̌ + ε) the problem could be con-
sidered ill-conditioned and then ill-posed if the data matrix X is
ill-conditioned (Belsley et al., 1980; Hansen, 1998, 2007; Hoerl
and Kennard, 1970a; Marquardt, 1970). This ill-conditioning (also
called collinearity) is of paramount importance to the efficacy
of least-squares estimation though it is a non-statistical problem
(Belsley et al., 1980). For instance, in the presence of collinearity the
uniqueness of the least-squares estimator may not be guaranteed.
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List of abbreviations

DAEs differential and algebraic equations
FIM Fisher information matrix
IG initial guess
None problem without regularization
ODEs ordinary differential equations
OED optimal experimental design
PE parameter estimation
QRP QR decomposition with column pivoting
Reg regularization technique either SsS, TSVD or Tikh
SsS identifiable parameter subset selection based-

regularization
SVD singular value decomposition
SVs singular value spectrum
Tikh Tikhonov based-regularization
TSVD truncated singular value decomposition based-

regularization

List of symbols
C parameter variance-covariance matrix without reg-

ularization
CReg Parameter variance-covariance matrix with regu-

larization Reg
CM measurement error variance-covariance matrix
f  set of DAE representing the process model
h set of relations between the measured variables and

the dependent state variables
H� simplified Hessian matrix (FIM)
HReg

�
simplified Hessian matrix (FIM) after applying the
regularization Reg

J� Jacobian matrix
JReg
�

Jacobian matrix after applying the regularization
Reg

L operator matrix in Tikhonov regularization, i.e.,
Reg = Tikh

Nm number of experimental data sampling times
Nmu  number of input variable switching times
Nmod number of available models
Np number of parameters
Ny number of measured response variables
Nx number of dependent state variables
OF objective function of PE
P permutation matrix of QRP decomposition
PD(Np) subspace of the positive definite matrices with

dimension Np × Np
PSD(Np) subspace of positive semi-definite matrices with

dimension Np × Np
Q orthogonal matrix of QRP
r� numerical �–rank
R upper triangular matrix with decreasing diagonal

elements of QRP
S sensitivity matrix
S̃ scaled sensitivity matrix
S̃Reg scaled sensitivity matrix after applying regulariza-

tion Reg
Sv rectangular diagonal matrix with singular values on

the diagonal of SVD
Sym(Np) space of symmetric matrices with dimension

Np × Np
t independent variable time
tk discrete time instance kth
u input action or experimental design vector
uIG initial guess of experimental design vector

ûcrit optimal experimental design vector after comput-
ing OED with crit = {A, D, E}

U real orthogonal matrix of SVD
var(�̂k) parameter variance of parameter estimate �̂k

V real orthogonal matrix of SVD
x dependent state variable
x0 initial conditions of the dependent state variable
y predicted response variable
ym measured response variable
y normalized predicted response variable
Ym total experimental data vector
Y total predicted response vector
Z PE residual vector

 ̨ scaling factor
�(A) collinearity index of matrix A = {S̃, S̃Reg}
�max maximum collinearity index
ε measurement error
� singular value threshold
�� singular value threshold w.r.t. maximum condition

number
�� singular value threshold w.r.t. maximum collinea-

rity index
�(A) condition number of matrix A = {S̃, S̃Reg}
�max(A) maximum condition number of matrix A = {S, S̃}
� parameter vector
�IG initial guess of parameter vector
�̂ unbiased parameter estimate
�̃(Np−r�) unidentifiable parameter vector after applying reg-

ularization Reg = SsS
�̃(r�) identifiable parameter vector after applying regu-

larization Reg = SsS
�̂(Reg) regularized parameter estimate after applying reg-

ularization Reg
� normalized parameter vector
�(A) eigenvalue of matrix A = {C, H�}
� Tikhonov regularization parameter
�i parameter variance-decomposition proportion

associated with singular value ςi

 step size
� standard deviation of measurements
�i standard deviation of measurement i
�2

i
variance of measurement i

ςi singular value ith
˙y measurement error standard deviation matrix
� step direction
˚LSQ weighted nonlinear least squares criterion
˚Reg weighted nonlinear least squares criterion after

applying regularization Reg
I data sampling time grid
Iu input action time grid

 information function in OED

 crit information function in OED (alphabetic criteria in

OED with crit = {A, D, E})
˝(�) discrete smoothing norm functional in Reg = Tikh

In least-squares estimation for nonlinear systems ill-
conditioning is locally analyzed based on the sensitivity matrix (S)
of the predicted output trajectories with respect to the parameters
(Asprey and Macchietto, 2000; Bard, 1974; Bates and Watts, 1988;
Franceschini and Macchietto, 2008; Jacobson, 1985; Johansen,
1997; Marquardt, 1970; Vajda et al., 1989). If the sensitivity matrix
is ill-conditioned, the PE problem is locally ill-posed, otherwise it
is locally well-posed. For ill-conditioned problems a distinction is
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