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a  b  s  t  r  a  c  t

Data  reconciliation  (DR)  and  principal  component  analysis  (PCA)  are  two  popular  data  analysis  techniques
in process  industries.  Data  reconciliation  is used  to obtain  accurate  and  consistent  estimates  of variables
and parameters  from  erroneous  measurements.  PCA  is primarily  used  as  a  method  for  reducing  the
dimensionality  of  high  dimensional  data  and  as  a preprocessing  technique  for denoising  measurements.
These  techniques  have  been  developed  and  deployed  independently  of each  other.  The  primary  purpose
of  this  article  is to  elucidate  the  close  relationship  between  these  two  seemingly  disparate  techniques.
This  leads  to a unified  framework  for  applying  PCA  and  DR. Further,  we  show  how  the  two  techniques
can  be  deployed  together  in  a  collaborative  and  consistent  manner  to process  data.  The  framework  has
been extended  to deal with  partially  measured  systems  and  to  incorporate  partial  knowledge  available
about the  process  model.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Data reconciliation (DR) is a technique that was proposed in
the early 1950s to derive accurate and consistent estimates of
process variables and parameters from noisy measurements. This
technique has been refined and developed over the past 50 years.
Several books and book chapters have been written on this and
related techniques (Romagnoli and Sanchez, 1999; Veverka and
Madron, 1997; Narasimhan and Jordache, 2000; Hodouin, 2010;
Bagajewicz, 2001). The technique is now an integral part of simu-
lation software packages such as ASPEN PLUS®. Several standalone
software packages for data reconciliation such as VALI, DATACON®,
are also available and deployed in chemical and mineral process
industries. The main benefit derived from applying DR is accu-
rate estimates of all process variables and parameters which satisfy
the process constraints such as material and energy balances. The
derived estimates are typically used in retrofitting, optimization
and control applications. In order to apply DR, the following infor-
mation is required.

(i) The constraints that have to be obeyed by the process variables
and parameters must be defined. These constraints are usually

∗ Corresponding author. Tel.: +91 4422574165; fax: +91 4422574152.
E-mail addresses: naras@iitm.ac.in (S. Narasimhan),

niravbhatt@iitm.ac.in (N. Bhatt).

derived from first principles model using process knowledge,
and consist of material and energy conservation equations
including property correlations, and can also include equip-
ment design equations, and thermodynamic constraints.

(ii) The set of process variables that are measured must be speci-
fied. Additionally, inaccuracies in these measurements must be
specified in terms of the variances and covariances of errors.
This information is usually derived from sensor manuals or
from historical data.

Another multivariate data processing technique that has
become very popular in recent years is principal component analy-
sis (PCA) (Jolliffe, 2002). This method is primarily used for reducing
the dimensionality of data and to denoise them. It is also used
in developing regression models, when there is collinearity in the
regressors variables (Davis et al., 1999). In chemical engineering, it
has been used for process monitoring and fault detection, and diag-
nosis (Kourti and MacGregor, 1995; Yoon and MacGregor, 2001).
Generally, PCA has been regarded as a data-driven multivariate
statistical technique. In a recent paper, PCA was interpreted as a
model identification technique that discovers the linear relation-
ships between process variables (Narasimhan and Shah, 2008). This
interpretation of PCA is not well known, although other authors
have previously alluded to it.

The purpose of this article is to establish the close connection
between PCA and DR. Specifically, it is shown that PCA is a technique
that discovers the underlying linear relationships between process
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variables while simultaneously reconciling the measurements with
respect to the identified model. Exploring this connection further,
it is shown that iterative PCA (IPCA) is a method which simulta-
neously extracts the linear process model, error-covariance matrix
and reconciles the measurements (Narasimhan and Shah, 2008).
Several benefits accrue from this interpretation:

(i) It shows that data reconciliation can be applied to a process
purely using measured data, even if it is difficult to obtain a
model and measurement error variances using a priori knowl-
edge. It thus expands the applicability of data reconciliation and
related techniques.

(ii) PCA and IPCA can be used as techniques for obtaining a process
model and measurement error-covariance matrix from data.
Since these are the two essential information required to apply
DR, it is now possible to apply the rigorous and well devel-
oped companion technique such as gross error detection (GED)
for fault diagnosis. This will eliminate the difficulties and defi-
ciencies present in the current approach of using PCA for fault
diagnosis.

Additional useful results presented in this paper include the
interpretation of the process model obtained using PCA, when only
a subset of the process variables is measured. Modification of the
PCA and IPCA techniques to incorporate partial knowledge of some
of the process constraints is also proposed. The impact of incor-
rectly estimating the model order (the actual number of linear
constraints) on the reconciled estimates is also discussed, leading to
a recommendation for practical application of PCA and combining
it with tools of DR and GED.

The paper is organized as follows. Sections 2 and 3 introduce
the background on DR and PCA, respectively. Model identifica-
tion and data reconciliation using PCA for the case of known
error-covariance matrix is described in Section 4. For unknown
error-covariances case, Section 5 describes a procedure for simul-
taneous model identification, estimation of error-covariances, and
data reconciliation using IPCA. Section 6 extends PCA (IPCA) to par-
tially measured systems, and known constraint matrix. Further, it
discusses selection criteria of model order when the model order is
not known. Section 7 concludes the paper. The developed concepts
are illustrated via a simulated flow process.

2. Basics of data reconciliation

In this section, the application of DR to linear steady-state pro-
cesses is discussed, including the case when a subset of the process
variables is measured (also known as partially measured systems).

2.1. Linear steady-state processes

The objective of data reconciliation is to obtain better estimates
of process measurements by reducing the effect of random errors
in measurements. For this purpose, the relationships between dif-
ferent variables as defined by process constraints are exploited. We
restrict our attention to linearly constrained processes which are
operating under steady state. An example of such a process is a
water distribution network, or a steam distribution network with
flows of different streams being measured. We first describe the
data reconciliation methodology for the case when the flows of all
streams are measured.

Let x(j) ∈ R
n be an n-dimensional vector of the true values of

the n process variables corresponding to a steady-state operating
point for each sample j. The samples x(j), j = 1, 2, . . .,  N can be drawn

from the same steady state or from different steady states. These
variables are related by the following linear relationships1:

Ax(j) = 0m×1 (1)

where A is an (m × n)-dimensional matrix, and 0 is an
m-dimensional vector with elements being zero. In data recon-
ciliation, A is labelled as a “constraint matrix”. Note that the rows
of A span an m-dimensional subspace of R

n, while x(j) lies in an
(n − m)-dimensional subspace (orthogonal to the row space of A)
of R

n. Let y(j) ∈ R
n be the measurements of the n variables. The

measurements are usually corrupted by random errors. Hence, the
measurement model can be written as follows:

y(j) = x(j) + �(j), (2)

where �(j) is an n-dimensional random error vector at sampling
instant j. The following assumptions are made about the random
errors:

(i) �(j)∼N(0, ˙�)

(ii) E[�(j)�(k)T] = 0, ∀ j /= k

(iii) E[x(j)�(j)T] = 0

(3)

where E [ · ] denotes the expectation operator. If the error
variance–covariance matrix �� is known, then the reconciled esti-
mates for x(j) (denoted as x̂(j)) can be obtained by minimizing the
following objective function:

min
x(j)

(y(j) − x(j))T˙−1
� (y(j) − x(j))

s.t. Ax(j) = 0.
(4)

The reconciled values of the variables are given by:

x̂(j) = y(j) − ˙�AT(A˙�AT)
−1

Ay(j) = Wy(j), (5)

where W = I − ˙�AT(A˙�AT)
−1

A. Under the assumptions made
regarding the measurements errors, it can be shown that the recon-
ciled estimates obtained using the above formulation are maximum
likelihood estimates. It can also be verified that the estimates x̂(j)
satisfy the imposed constraints and are normally distributed with
mean, x(j), and covariance, W��WT.

If all the measured samples are drawn from the same steady
state operating point, then DR can be applied to the average of
the measured samples. However, if the samples are from different
steady states, then DR is applied to each sample independently. For
ease of comparison with PCA, we consider a set of N samples (which
could correspond to different steady state operating periods) to
which DR is applied. The set of N samples is arranged in the form
of an (n × N)-dimensional data matrix, Y as

Y = [y(1), y(2), . . .,  y(N)] = X + E, (6)

where X and E are (n × N)-dimensional matrices of the true values
and the errors, respectively. The matrix X̂ of reconciled estimates
for the N samples is given by

X̂ = WY. (7)

The following example illustrates DR on the flow process shown in
Fig. 1.

1 For flow processes considered in this paper, the constraint model given by
Eq. (1) is appropriate. In general if Ax(j) = b, then PCA and other related methods
described in the paper can be used after subtracting the sample mean y from the
measurements. The estimate of b is given by Ây.
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