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a  b  s  t  r  a  c  t

We  generalize  the  applicability  of  interactive  methods  for solving  computationally  demanding,  that
is,  time-consuming,  multiobjective  optimization  problems.  For  this  purpose  we  propose  a  new  agent
assisted  interactive  algorithm.  It employs  a computationally  inexpensive  surrogate  problem  and  four
different  agents  that  intelligently  update  the  surrogate  based  on the  preferences  specified  by  a  decision
maker.  In  this  way,  we decrease  the waiting  times  imposed  on  the  decision  maker  during  the  interactive
solution  process  and  at the same  time  decrease  the  amount  of preference  information  expected  from
the  decision  maker.  The  agent  assisted  algorithm  is not  specific  to  any  interactive  method  or  surrogate
problem.  As  an  example  we implement  our  algorithm  for  the  interactive  NIMBUS  method  and  the  PAINT
method  for  constructing  the surrogate.  This  implementation  was applied  to support  a real  decision  maker
in solving  a two-stage  separation  problem.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the modern society, it has become more and more important
to support decision makers in finding solutions which take sev-
eral conflicting objectives into account and optimize the objectives
simultaneously. For such problems, it is not possible to find a single
optimal solution because of the conflicting nature of the objectives.
Instead of a single optimal solution, these multiobjective optimiza-
tion problems have several so-called Pareto optimal solutions with
different trade-offs between the objectives.

When dealing with real-world optimization problems, it
is usually needed to find a single or few Pareto optimal
solutions to be implemented which are called most preferred
solutions. In order to select such a solution(s), some additional infor-
mation is needed, such as how a solution should be changed in order
it to get a more preferred solution for the problem, what kind of
trade-offs are acceptable or what are desirable values for objec-
tive functions. This preference information can be obtained from
a human decision maker (DM) having expertise in the problem
domain. Several methods have been developed for finding the most
preferable solution (see, e.g., Branke et al., 2008; Miettinen, 1999
and references therein).

∗ Corresponding author. Tel.: +358 408053287.
E-mail address: vesa.ojalehto@jyu.fi (V. Ojalehto).

In this paper, we concentrate on so-called interactive methods
(see, e.g., Miettinen, 1999; Miettinen et al., 2008 and references
therein), where the solution process makes progress iteratively
by asking the DM to specify preference information until most
preferred one is found. By exploring Pareto optimal solutions in
this manner, the DM can learn about the trade-offs between the
conflicting objective functions and, thus, gain insight about the
problem. In addition, the DM can learn about how feasible his or her
preferences are by comparing the expectations to the Pareto opti-
mal  solutions found. This means that the DM can even change his or
her preferences during the solution process, if desired. Based on the
learning the DM is able to make informed decisions on what kind of
Pareto optimal solutions would best satisfy his or her preferences.

Interactive methods have given promising results for solv-
ing real-world optimization problems involving wide variety of
engineering fields. These problems include optimal control of a
continuous casting of steel (Miettinen, 2006, 2007), intensity mod-
ulated radiotherapy treatment planning (Ruotsalainen et al., 2009),
optimizing configurations of an oxyfuel power plant process (Tveit
et al., 2012), operating wastewater treatment plant (Hartikainen
et al., 2015; Hakanen et al., 2013), optimal design and control of a
paper mill (Steponavice et al., 2014), among others. For more exam-
ples of use of interactive methods in various fields see Ojalehto et al.
(2014) and references therein.

Real-world multiobjective optimization problems can be com-
putationally demanding. The function evaluations may depend,
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for example, on time-consuming computations or simulations
(Hakanen et al., 2013; Hasenjäger and Sendhoff, 2005; Steponavice
et al., 2014; Xu et al., 2004). If this is the case, an interactive
multiobjective optimization process as outlaid above may  become
infeasible by the long waiting times needed to generate new Pareto
optimal solutions according to the preference information specified
by the DM. In other words, the interactive nature of the solution
process suffers and the most preferred solutions may  not be found.
For example, the DM may  be restricted to examining only very
few Pareto optimal solutions and may  stop the solution process
prematurely.

One approach to solving computationally demanding problems
is to replace computationally expensive functions by simplified
ones. However, if the problem is simulation-based, that is, involves
a simulator, it can be a so called black-box problem without any
additional information about the problem besides decision variable
and objective (and possibly constraint) function values. Another
widely used approach is to utilize parallelization techniques to
decrease the computation time. But it is possible that the problem
is implemented in a way that does not allow for parallelization,
e.g., the used simulator may  have only a limited number of licenses
available.

To summarize, when solving a computationally demanding
multiobjective optimization problem using an interactive method,
it is quite possible that the method requires more time to gener-
ate new Pareto optimal solutions than there is to spare. If other
approaches cannot be utilized or they do not provide enough
improvement in the time available, a natural way of handling such
problems is to replace the computationally demanding problem
with a computationally less demanding surrogate. In practice, this
means that the DM is shown approximate rather than Pareto opti-
mal  solutions during the interactive solution process. However,
applying the surrogate problem in multiobjective optimization has
significant limitations and has been elaborated only in few studies
(see e.g. Forrester et al., 2008).

A good accuracy of the surrogate problem is important in
order to avoid misleading the DM.  Because the preference infor-
mation specified by the DM indicates what kind of solutions he
or she is interested in, this information can be used to update
the surrogate in an intelligent way. This means that the accuracy
of the surrogate varies and is most accurate near the interest-
ing solutions. It has been reported in the literature that solution
processes with interactive methods often take quite few iter-
ations (see e.g. Gardiner and Vanderpooten, 1997; Miettinen,
1999, pp. 134–135). One reason for this may  be the cogni-
tive load set on the DM.  The load could be decreased if the
amount of the preference information expected from the DM was
smaller.

In this paper, we combine an interactive multiobjective objec-
tive method and a surrogate problem in an intelligent way  to
support the DM in order to decrease the waiting times experienced
by the DM and in addition to increase the accuracy of the surro-
gate problem. We  propose to enhance the solution process with
agents, i.e., entities that try to achieve some pre-defined goals by
autonomous and intelligent actions. In the proposed algorithm, we
utilize the agents to update the surrogate problem near solutions
that are interesting to the DM,  to minimize waiting times imposed
on the DM and to decrease the amount of preference information
expected from the DM. We  describe the proposed method as a gen-
eral algorithm, as it does not depend on any specific methods or
techniques. In addition to the interactive method and to the surro-
gate problem construction technique, the introduced agent assisted
algorithm employs four different types of agents, each having their
own goals.

To give more concrete ideas of how to implement agents, we
demonstrate the agent assisted algorithm implemented with the

classification-based NIMBUS method (Miettinen, 1999; Miettinen
and Mäkelä, 2000, 2006) selected as the interactive method and the
PAINT method (Hartikainen et al., 2012) selected as the surrogate
problem construction technique. Furthermore, we apply the agent
assisted algorithm involving the two above-mentioned methods to
solve a computationally demanding two-stage separation problem
and discuss the advantages achieved.

The rest of this paper is organized as follows. In Section 2,
we present the concepts and background material utilized. This
includes the interactive NIMBUS method and the PAINT surrogate
construction technique that are used as examples. In addition, we
include a brief overview of agent studies in relation to this research.
We introduce the new agent assisted interactive algorithm in Sec-
tion 3. In Section 4, we describe the four different agents employed
by the algorithm in more detail. We  demonstrate the advantages
of the new algorithm by giving an example of supporting a DM in
solving a multiobjective two-stage separation problem in Section 5.
Finally, the paper is concluded by a discussion and concluding
remarks in Sections 6 and 7, respectively.

2. Background

Next we  discuss the background material used in this paper.
First we briefly describe the notations used and then provide infor-
mation on the methods used, that is, on the interactive NIMBUS
method for multiobjective optimization and the PAINT method for
constructing the surrogate problem. We  finish this section by defin-
ing agents in relation to our research.

2.1. Interactive multiobjective optimization

In this paper, we consider multiobjective optimization problems
of the form

minimize or maximize {f1(x), f2(x), . . .,  fk(x)}
subject to x ∈ S,

(1)

where fi : S → R are k (≥ 2) conflicting objective functions, and
x = (x1, x2, . . .,  xn)T is the decision (variable) vector bounded by
constraints that form the feasible set S ⊂ R

n. Objective vectors
f(x) = (f1(x), f2(x), . . .,  fk(x))T consist of objective function values cal-
culated at x.

A decision vector x̂ and the corresponding objective vector f(x̂)
are called Pareto optimal if there does not exist any other feasi-
ble x so that fi(x) ≤ fi(x̂) for all i = 1, . . .,  k and fj(x) < fj(x̂) for least
one j = 1, . . .,  k. Such objective vectors are called Pareto optimal
solutions to problem (1), and a set of Pareto optimal solutions is
called a Pareto frontier (Miettinen, 1999). Finding the most pre-
ferred Pareto optimal solution to problem (1) is called a solution
process. For the solution process discussed in this research, the most
preferred Pareto optimal solution is found by utilizing the DM’s pre-
ferences, i.e. information about how a solution should be changed in
order to get a more preferred solution for the problem, what kind
of trade-offs between objectives are acceptable for the DM or what
are desirable values for objective functions.

The ranges of objective function values in the set of Pareto
optimal solutions can be shown to the DM to give general
understanding about attainable solutions. The k-dimensional ideal
objective vector contains the best values of objective values whereas
the worst objective function values form a nadir objective vector.
Components of the ideal objective vector are obtained by min-
imizing each of the objective functions individually subject to S
whereas calculating the nadir objective vector necessitates know-
ing the whole set of Pareto optimal solutions and thus, usually
estimated values are used (for further information, see e.g. Bechikh
et al., 2010; Korhonen et al., 1997; Miettinen, 1999).
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