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a  b  s  t  r  a  c  t

Dynamic  parameter  estimation  in  cases  where  it may  be impossible  to identify  all the  model  parameters
is  considered.  The  objective  is  to obtain  reliable  estimates  to  the  maximal  number  of  physical  parameters
in  a stable  regression  model  where  the  modeling  of  the  noise  in the  data  is avoided.  The modifications
required  in  the  stepwise  regression  algorithm  to accommodate  various  nonlinear  terms  in  the regression
model  are  investigated  and a new  algorithm  is  presented.  The  algorithm  considers  the  hierarchy  among
the  parameters,  the initial  trends  of  the  experimental  data  curves  and  the  initial  values  of  the  state
variables  in  order  to  establish  a  minimal  initial  set  of  parameters  to  be included  in  the  model.  Additional
parameters  are  then  added  in a stepwise  manner,  while  considering  the hierarchy  of  the  parameters
and  the  associated  reduction  of  the  objective  function  value.  The  process  continues  as  long  as  significant
and  physically  feasible  values  for  the  parameters  are  obtained.  The  new  method  is  demonstrated  with
several  examples  from  the  literature.  Additional  issues  investigated  include  the  proper  combination  of
the simultaneous  and  sequential  solution  methods  in the  stepwise  regression  algorithm,  the  preferred
method  for  the  estimation  of  the  derivatives  and  the  effect  of variable  scaling.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Reliable mechanistic kinetic models of chemical/biological pro-
cesses are essential for the understanding, design, optimization and
control of such processes. Such models are often described by sys-
tems of ordinary differential equations (ODEs). The models usually
contain unknown physical parameters that need to be determined
using a set of measurements (experimental data). Typically, the
estimation of the parameter values is performed using a maxi-
mum likelihood approach, where the objective is to minimize the
weighted squared error between the set of the measured data and
the model predictions.

The various stages of the mechanistic model development and
the estimation of the model parameters in dynamic systems were
described in detail by Maria (2004). Sun et al. (2012) provide
a recent review of the methods used for parameter estimation.
They classify the optimization algorithms used as determinis-
tic global, metaheuristic global (such as evolutionary algorithms,
EA) and deterministic local (gradient based). They point out that
deterministic global algorithms are very time consuming and
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usually cannot obtain satisfactory solutions in a reasonable time
frame when applied to practical problems of realistic sizes. Conse-
quently, they recommend the use of metaheuristics for identifying
near optimal parameter values, followed by the use of gradient
based methods in order to refine these values. Recently devel-
oped methods for finding global optimum in dynamic parameter
estimation problems include, for example, the incremental iden-
tification procedure followed by parameter estimation (Michalik
et al., 2009), decomposition of the problem by generating an arti-
ficial neural network model (ANN) that is consequently used to
obtain an estimate of the parameters (Dua, 2011), and conver-
sion of the dynamic system of equations into a set of algebraic
constraints that enables the use of a deterministic global optimiza-
tion approach for parameter identification (Esposito and Floudas,
2000).

Test problems for evaluation of the methods for their global
convergence ability and for computational efficiency were pro-
posed for example by Biegler et al. (1986), Floudas et al. (1999)
and Moles et al. (2003). Many of those test problems, however,
disregard some of the major difficulties involved in the tasks of
the mechanistic model development and parameter identifica-
tion.

Consider for example the test problem presented by Moles et al.
(2003). This test problem involves the estimation of 36 kinetic
parameters of a nonlinear biochemical model formed by 8 ODEs
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(ordinary differential equations) that describe the variation of the
metabolite concentration with time. “Pseudo” experimental data
for this test problem was generated by introducing a “nominal” set
of parameter values into the model, integrating the model equa-
tions and recording the “experimental” values at 20 equally spaced
time intervals. No measurement noise was added to the simulated
experimental data. This test problem has proven to be quite chal-
lenging because of the high dimensionality and the large number of
local solutions, however it represents oversimplification in many
aspects related to practical problems. In this test problem there is
no uncertainty regarding the adequacy of the mathematical model
to represent the process (as the “process” data is actually generated
by the model), and large amount of high precision “experimen-
tal” data, as well as a good set of references for initial guesses
for the parameters (i.e., the parameter values that were used to
generate the data) are available. Moreover, no attempt was made
to check the validity of the parameter sets corresponding to the
local (and global) solutions using statistical metrics (such as confi-
dence intervals) or judging their feasibility from the physical point
view.

Test problems which are more realistic in terms of the postu-
lated mathematical model of the process and the available data
are presented, for example, by Biegler et al. (1986), Maria (1989),
Zamostny and Belohlav (1999), Kadam et al. (2004), Liu and Wang,
2009, Gennemark and Wedelin (2009), Brun et al. (2001) and Tsai
et al. (2014). These problems are characterized by uncertainty
regarding the suitability of the mathematical model to represent
the data, availability of insufficient amount and/or low precision
noisy experimental data and lack of sensible initial estimates for
some (or all) of the parameter values. Several researchers (see
for example, McLean and McAuley, 2012; McLean et al., 2012;
Brun et al., 2001; Liu and Wang, 2009; Sin et al., 2010; Kravaris
et al., 2013) demonstrate that in realistic parameter estimation
problems it is impossible to identify all the parameters. Statisti-
cal metrics, such as confidence intervals, are used for determining
the uncertainty and stability of the calculated parameter values.
Due to the nonlinearity of the models, the parameter sensitivity
information is obtained by linearization of the model in the vicin-
ity of an initial estimate of the solution (McLean and McAuley,
2012) or at the optimum found (Sin et al., 2010). Parameter esti-
mation in linear models usually involves removal of parameters
(and their associated terms) if the value of zero is included within
their confidence interval (see for example, Shacham and Brauner,
2003). Application of the same principle to the nonlinear mod-
els usually involved in dynamic parameter estimation problems
may  lead to extensive modification of the model upon removal of
the terms associated with the unidentifiable parameters, which
may  result in unexpected consequences. In extreme cases the
degenerated model may  not represent the underlying physical phe-
nomenon.

To avoid such a situation we have developed a new stepwise
regression procedure with the objective to obtain reliable esti-
mates to the maximal number physical parameters involved in
the model whose values are unknown. These are often needed
for further analysis and modeling of the pertinent physical phe-
nomena. The procedure starts with a minimal set of parameters
that can yield a feasible solution that is consistent with the ini-
tial trend of the state variables data, and continues with addition
of parameters as long as significant and physically feasible val-
ues for the parameters are obtained. The optimal parameter values
obtained in the earlier step are used as initial estimates for next
step, to reduce the parameter search space and speed-up the com-
putation. The details of this procedure are presented in Section
3 and its use is demonstrated by solving the examples provided
by Zamostny and Belohlav (1999), Maria (1989) and Merchuk
(2013).

2. Basic concepts

The ODE parameter estimation problem can be defined

min  ˚1(�)
�

=
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�=1
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(x�,i − xc
�,i)
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dx
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x(0) = x0
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where F is a system of m ordinary differential equations, x is a vector
of m dynamic variables, � is a vector of p parameters, x� and xc

� are
the vectors of m observed and calculated values at the �th data
point, respectively, and W is a vector of m weighting factors.

An alternative formulation which enables converting the differ-
ential parameter estimation problem into an algebraic parameter
estimation problem is the following:
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�

=
n∑

�=1

m∑
i=1
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subject to

ẋ� = F(x�, �, t) � = 1, 2, . . .,  n (4)

where ẋ�,i is an estimate for the derivative: ẋ�,i = dxi/dt at the �th
data point. Using this formulation the matrix of the observed data
points x� replaces the vector of state variables x in the model F.

With the first problem formulation, the solution is carried out
using the sequential (or the feasible path) approach. With this
approach, the minimization defined in Eq. (1) is carried out in an
outer loop, while in the inner loop an integration routine is used to
determine the state variable values at time intervals where exper-
imental data are available. In this study, the integration is usually
carried out by the MATLAB1 ode45 function, which is based on an
explicit Runge–Kutta (4,5) formula, the Dormand–Prince (1980)
pair. This algorithm monitors the integration-error estimate and
controls the step size of the integration in order to keep the error
below a specified threshold. The accuracy requested is that both the
relative and absolute (maximal) errors be less than the truncation
error tolerance. The default value of this tolerance is 1.0E−6. The
integration is carried out in a piecewise manner from the point t� to
t�+1. At this point the �+1th component of the objective function is
calculated and added to the previous components of the objective
function. This process is continued until reaching the last set of data
points where t�+1 = tn. For integration of stiff systems, the MATLAB
library function ode15s is used, which is based on the backward
difference formulas (BDF) method of Gear (1971).

For the outer loop minimization the Levenberg–Marquardt (LM)
algorithm (Seber and Wild, 2003) as implemented in the MATLAB
nlinfit function is used. This method belongs to the gradient-
based category, where derivatives of the objective function and
the constraints need to be evaluated. LM is a modification of the
Newton method, where the second derivatives appearing in the
Hessian matrix are neglected. The algorithm switches to the steep-
est descent method when the Hessian matrix becomes nearly
singular.

Another solution technique involves the conversion of the
differential parameter estimation problem into an algebraic param-
eter estimation problem. In order to use this technique, the
derivatives of the state variables, ẋ�,i need to be estimated first. This

1 MATLAB is a product of MathWorks, Inc., http://www.mathworks.com.
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