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a  b  s  t  r  a  c  t

Good  dynamic  model  estimation  plays an important  role  for both  feedforward  and  feedback  control,
fault  detection,  and  system  optimization.  Attempts  to  successfully  implement  model  estimators  are
often  hindered  by severe  process  nonlinearities,  complicated  state  constraints,  systematic  modeling
errors,  unmeasurable  perturbations,  and irregular  measurements  with  possibly  abnormal  behaviors.
Thus,  simultaneous  data  reconciliation  and  gross  error  detection  (DRGED)  for dynamic  systems  are fun-
damental  and  important.  In this  research,  a  novel  particle  filter  (PF)  algorithm  based  on the  measurement
test  (MT) is  used  to solve  the  dynamic  DRGED  problem,  called  PFMT-DRGED.  This  strategy  can  effectively
solve  the  DRGED  problem  through  measurements  that contain  gross  errors  in the  nonlinear  dynamic
process  systems.  The  performance  of  PFMT-DRGED  is demonstrated  through  the  results  of  two  statistical
performance  indices  in a classical  nonlinear  dynamic  system.  The  effectiveness  of  the  proposed  PFMT-
DRGED  applied  to a nonlinear  dynamic  system  and  a large  scale  polymerization  process  is illustrated.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

To control, optimize, or evaluate the behavior of a chemical
process, it is important to know the current status of the pro-
cess. Since it is generally difficult to measure all the system state
variables, the values of the process variables contained in the
model are chosen to represent the operation plant. The dynamic
data reconciliation strategy uses the state space model and par-
tial process measurements to estimate unmeasured state variables
and reconcile the measurements simultaneously. However, pro-
cess measurements generally contain noise and gross errors, both
of which have a detrimental effect on process control and optimiza-
tion which require accurate estimated states and measurements.
When measurements are corrupted by random variations of the
environment, they are said to be affected by noise. Gross errors
in measurements usually occur for many different reasons. These
include human errors, instrumental errors, fraudulent behavior,
and faults in systems. The presence of gross errors affects the results
of dynamic data reconciliation since the large errors are not suffi-
ciently eliminated or corrected. As a result of smearing, both the
reconciled measurements and the estimates of states may  become
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less accurate. Clearly, the measurements with gross errors need
to be identified and the magnitudes of the gross errors should be
estimated to decrease their impact on the results of data reconcil-
iation. Gross error detection and data reconciliation are generally
considered crucial techniques. Therefore, simultaneous data recon-
ciliation and gross error detection (DRGED) for dynamic systems are
fundamental and important to process control and optimization.

Data reconciliation is also a model-based filtering technique
that attempts to reduce the inconsistency between measured pro-
cess variables and a process model. In the study of the dynamic
linear system, the Kalman Filter (KF) plays a crucial role in mea-
suring data with random errors (Kalman, 1960; Kalman and Bucy,
1961). KF estimates the desirable statistical properties of being
unbiased and also has the minimum variance under the assump-
tion of the Gaussian distribution. Furthermore, KF estimates are the
maximum-likelihood estimates (Sage and Melsa, 1971). In practice,
many physical systems exhibit nonlinear dynamics and have states
subject to hard constraints such as non-negative concentrations
and temperatures. Therefore, KF (designed for unconstrained linear
systems) is no longer directly applicable. Jazwinski (2007) extended
the use of KF to nonlinear dynamic systems, and proposed the
extended KF (EKF). Stanley and Mah  (1977) were the first ones
to tackle the data reconciliation process using EKF (Narasimhan
and Jordache, 2000). Since the reliability of EKF-based approaches
often decreases as the system nonlinear complexities and
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modeling uncertainties increase, the model should not be com-
plex. A simple random walk model can be used to characterize the
process dynamics. Later, Robertson et al. (1996) presented a for-
mulation of the dynamic data reconciliation problem as a special
case of a more general moving-horizon state estimation method.
In order to detect the gross error, Singhal and Seborg (2000) pro-
posed a probabilistic formulation that combined the EKF and the
expectation-maximization (EM) algorithm in measurement rec-
onciliation. Another improved KF filter, the unscented KF (Julier
et al., 2000; Romanenko and Castro, 2004; Qu and Hahn, 2009),
was developed for the application of KF. Due to linearization at
each time step for the EKF application, large errors and divergence
of the filter may  occur (Romanenko et al., 2004). Furthermore, if
the state and/or measurement equations are highly nonlinear and
the posterior distribution of the states is non-Gaussian, the filters
will give unsatisfactory state estimates in a number of applications
(Chen et al., 2005, 2008).

For the optimal solution to the nonlinear filtering problem, a
complete description of the conditional probability density should
be maintained and is infinite dimensional (Kushner, 1967). Dur-
ing the past decade, particle filtering (PF) technique has become
a popular signal processing tool for problems that involve non-
linear tracking of an unobserved signal of interest given a series
of related observations (Doucet et al., 2001; Arulampalam et al.,
2002; Maiz et al., 2012; Gning et al., 2012). Compared with KF, PF
is described as a general filter for the nonlinear and non-Gaussian
state space systems. It does not assume a fixed shape of any proba-
bility density. Instead, it approximates the densities of interest via
the Monte Carlo estimation method to generate a large number of
random samples (particles) for constructing the approximations of
the posterior probability distribution of the states. PF can capture
the time-varying nature of distributions commonly encountered in
nonlinear dynamic problems. This can be computed from the sam-
pled particles at any moment. Some papers, but not many, applied
to PF in data reconciliation have been reported in literature. Chen
and his coworkers used PF for dynamic data reconciliation and pro-
cess change detection (Chen et al., 2008). They also applied PF and
the kernel smoothing method on-line for state and parameter esti-
mation in a highly non-linear batch processes (Chen et al., 2005).
López-Negrete et al. (2011) used the constrained PF approach to
approximate the arrival cost in moving horizon estimation and
applied the method in the continuously stirred tank reactor and the
constrained batch reactor process in order to estimate the unmea-
sured states accurately. Zhao et al. (2013) investigated a parameter
estimation problem for batch processes using EM algorithm with
PF.

The performance of PF may  be severely degraded when gross
errors are present in the process measurements. In only a few
papers, (Chen et al., 2008) the dynamic reconciliation of mea-
surements with gross errors is considered in the dynamic process
system. The measurements with gross errors should not be treated
in the same way as the regular measurements. The detection and
processing of gross errors should be combined in the procedure
of particle filtering. Chen et al. (2008) proposed a method of the
dynamic data reconciliation using PF for Gaussian distribution
based gross error detection. The goal is to improve performance
by detecting gross errors rather than processing them. If the gross
error is present in some measurements, the reconciled data using
PF may  be inaccurate because PF procedures would be deterio-
rated by a very small number of highly weighted particles amongst
a hoard of almost useless particles carrying a tiny proportion of
the probability mass. Those particles result in failure because of an
inadequate representation of the required probability density func-
tion (PDF). It is, therefore, necessary to identify and remove such
gross errors. In this paper, a new PF scheme, the PF and MT  (mea-
surement test) based simultaneous Data reconciliation and gross

error detection method (PFMT-DRGED), is proposed. In most liter-
ature, several data processing methods based on some particular
simulation runs were shown to have multiple advantages. Since PF
is a statistical method, it is unfair to use some particular simula-
tion runs as a comparison. Statistical performance indices should
be used to evaluate the performance of PF. Therefore, two statisti-
cal performance indices, the observed power (OP) and the average
number of Type I errors (AVTI), are used here to evaluate the per-
formance of this method.

The rest of the paper is organized as follows. The procedures of
PF for the dynamic data reconciliation are described in the next sec-
tion. MT  for gross error detection is then introduced. The integrated
implementations of PFMT-DRGED are proposed in Section 3. In Sec-
tion 4, the effectiveness of PFMT-DRGED is demonstrated through
the DRGED problems in two  case studies. The first case is simple. It
is widely used in the dynamic data reconciliation problems. It can
make fair comparisons under the same basis. The second case which
discusses the free radical polymerization of styrene, illustrates how
PF can be applied to a realistic system with the large-scale and
nonlinear processes. Finally, conclusions are drawn in Section 5.

2. PF for data reconciliation problem in nonlinear dynamics

State estimations deal with the problem of inferring knowl-
edge about process variables (or state) indirectly measured from
possibly noisy observations in a real process, and the state is a phys-
ical quantity that affects the observation represented by a certain
process model (Shao et al., 2009). With the Bayesian view on the
estimation, both the states and the observations are stochastic enti-
ties. Thus, the inference result is a conditional density function of
the states given the observational outcomes. PF provides a robust
tracking framework as it models uncertainty. It can consider multi-
ple state hypotheses simultaneously. Since states are less likely to
temporarily remain in the tracking process, PF can deal with short-
lived occlusions. This section describes how to apply PF to the data
reconciliation problems in the nonlinear dynamics.

A typical model for the dynamic system contains the state
dynamics and the measurement equations,

xk = f(xk−1, uk−1) + vk−1

zk = h(xk, uk) + nk

(1)

where xk is the process state to be estimated and k denotes the time
step. f and h are the known non-linear functions and the known
measurement functions, respectively. zk and uk are the vector of
the received measurements and the input vector at time step k,
respectively. vk−1 and nk are the white noise sequences for the
process states and measurements, respectively. They are generally
assumed to follow Gaussian distribution, i.e. vk−1 ∼ G(vk−1 ; 0, �),
and nk ∼ G(nk ; 0, �), where � and � are the covariance matrices.

The basic idea of PF is a direct mechanization of the formal
Bayesian filter. Suppose that a set of random samples (also called
particles) ({xi

k
, i = 1, . . .,  N}) from the posterior PDF p(xk−1|zk−1)

(k > 0) are available.
The particles xi

k
are usually drawn from p(xk|xi

k−1). Generally, in
the prediction phase, each of these particles from time step k − 1
in the state model (Eq. (1)) generate a set of prior samples at time
step k,

xi
k = f(xi

k−1, uk−1) + vi
k−1 (2)

where vi
k−1 is an independent sample drawn from PDF of the system

with noise.
In the update phase, using the prior samples in the light of

measurement zk, a weight {wi
k
, i = 1, . . .,  N} is calculated for each

particle. This weight is the measurement likelihood evaluated at
the value of the prior sample wi

k
= p(zk|xi

k
). The associated weights
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