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a  b  s  t  r  a  c  t

Data  analysis  plays  an  important  role  in  system  modeling,  monitoring  and  optimization.  Among  those
data  analysis  techniques,  change  point  detection  has  been  widely  applied  in  various  areas  including
chemical  process,  climate  monitoring,  examination  of gene  expressions  and  quality  control  in  the  manu-
facturing  industry,  etc.  In  this  paper,  an  Expectation  Maximization  (EM)  algorithm  is  proposed  to  detect
the  time  instants  at which  data  properties  are subject  to  change.  The  problem  is solved  in  the presence
of  unknown  and  changing  mean  and  covariance  in process  data.  Performance  of the  proposed  algorithm
is evaluated  through  simulated  and  experimental  study.  The  results  demonstrate  satisfactory  detection
of  single  and  multiple  changes  using  EM approach.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Change point detection problem has received a great attention in various areas such as hydrology, economics, meteorology, pharma-
cology, and signal processing. This field was first introduced in quality control of manufacturing industry where control charts were used
for quality assessment. In other applications such as climatology, analysis of instrumental data is of main interest as any level shifts occur
due to instrumentation or relocation of sampling sites can lead to wrong interpretation of temporal trends (Caussinus and Mestre, 2004).

Various methods have been proposed in literature to solve the change point problems. Also, in practice for data segmentation applica-
tions, it is needed to detect multiple change points simultaneously. This becomes even more valuable if the two consecutive change points
are close to each other. In the context of statistical approaches, these problems can be solved using either frequentist or Bayesian approach
(Du, 2010). In frequentist approach, the focus is on likelihood. In other words, the analysis is performed on P(D|H) which is probability
of data given hypothesis. Here, the data are assumed to be random while the hypothesis is assumed to be fixed. In fact, in frequentist
approach, one obtains the frequency with which one expects to observe the data, given the hypothesis. In Bayesian approach, however,
the focus is on P(H|D) which is the probability of a hypothesis given the data. The data are treated as fixed and the hypothesis as random.

Probabilistic methods based on likelihood have been used by many researchers (Hinkley, 1970; Hawkins, 2001). In Sen and Srivastava
(1975) a binary segmentation method was applied assuming normally distributed data with a constant variance and different mean before
and after the change. This method was further developed by Srivastava and Worsley (1986) for multivariate data. In Yao (1988), a method
based on maximizing Schwarz criterion, i.e. a penalized likelihood, is proposed to select the partitions in data. In Hawkins (2001), the
segmentation method was further generalized to multiple change points where a dynamic programming was  employed. The extension of
this solution to an unknown number of changes in the mean vector of multivariate data was derived in Caussinus and Mestre (2004).

Bayesian analysis of change point was first introduced in Chernoff and Zacks (1964). It was  assumed that the shift in block mean to
be a normally distributed increment with constant variance N(�i, �0) and hence a Markov model was introduced. A Bayesian method
based on posterior probabilities of change points using binomial and normal distribution was  developed in Smith (1975). The multivariate
form of Bayesian single change point detection can be found in Perreault et al. (2000), Perreault et al. (2000), Djafari and Feron (2007),
Zambadouglas and Hawkins (2006), Son and Kim (2005), and Karunamuni and Zhang (1996). In Karunamuni and Zhang (1996), an empirical
Bayes stopping time is studied for detection of a change in distribution of data when prior is not completely known. Multiple change points
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detection is also investigated through methods such as hypothesis testing (Venter and Steel, 1996) and a clustering-based algorithm called
product partition model (PPM).

Product partition model (PPM), is another method in change detection. In PPM technique, the prior probabilities for a random partition
are determined. As a result, the posterior probability of the partition is of the same form. In essence, in this method, a large number of
computations results in Markov sampling to determine the estimates of means, derived by conditioning on the partition and summing
over all possible partitions (Barry and Hartigan, 1993; Crowley, 1997). The extension of PPM to find the probability of change in mean and
variance of normal data using Gibbs sampling can be found in Loschi and Cruz (2005).

Generally, there are two approaches to solve the change point detection problem based on the Bayesian approach. One relies on finding
the mode of posterior probability called maximum a posteriori (MAP) which is optimization-based. The other is to calculate means of various
posterior probabilities leading to integration computation, which are difficult to solve analytically. As a result, Markov Chain Monte Carlo
(MCMC) is often used which draws samples from posterior distributions. The sampling from posterior distribution is performed using
various techniques such as Metropolis-Hasting or Gibbs sampler (Djafari and Feron, 2007; Cheon and Kim, 2010; Loschi et al., 2008).
Markov sampling is a widely used method in calculation of Bayesian posterior probability. But according to Cheon and Kim (2010), in
MCMC,  due to many possible partitions, the model becomes complicated with multiple modes and hence traditional Monte Carlo methods
may often get trapped in local energy minima.

In Cheon and Kim (2010), Stochastic Approximation Monte Carlo (SAMC) is applied to multiple change points detection problem and
SAMC performance is compared with reversible jump Markov Chain Monte Carlo approach (RJMCMC). It was  shown that in change point
estimation, SAMC outperforms RJMCMC for complex Bayesian model selection problem.

In Lavielle (2006), the change points are determined by minimizing a penalized contrast function which measures how the model,
derived based on change point sequence, fits the observed data.

On the other hand, Expectation Maximization (EM) can be viewed as an iterative approach to find the maximum likelihood (Gelman
et al., 2004; MacLachlan and Krishnan, 1997). EM can also be employed to detect the changes. Some researchers have already used EM
to detect change points (Yildirim et al., 2014; Bansal et al., 2008). In Yildirim et al. (2014), a Sequential Monte Carlo (SMC) online EM
algorithm is proposed to estimate the change point. In Bansal et al. (2008) an EM method is presented to estimate the distribution of
change point. These EM methods normally require complex calculation. In this paper, a new EM algorithm is proposed which does not
require heavy computation and it is easy to implement as well. This proposed framework has the advantage of handling improper selection
of hyperparameters compared with Bayesian approach.

In Keshavarz and Huang (2013, 2014), the change point problem was solved for mean shift detection with known and constant covariance
in univariate and multivariate data respectively. In real process, however, the covariance of data is often unknown and varying. One way
to deal with this problem is to estimate the covariance from the data. This approach, in the presence of several changes in the mean and
covariance of data, may  not work efficiently or may  not work at all without knowing the change instances. An alternative way to handle
this problem is through effective statistical inference approaches that can deal with unknown and changing covariance.

As mentioned in Keshavarz and Huang (2014), EM has a flexible framework through which several problems can be tackled. For instance,
EM handles improper priors more effectively than the Bayesian method. This is one of the main advantages of using EM while it may  be
computationally heavier. In Keshavarz and Huang (2014), this advantage was demonstrated through several examples. In this paper, the
focus is on derivation of EM solution for change point detection problem, in the presence of unknown covariance. Then, the solution is
extended to a more general framework where both mean and covariance of data, as unknown parameters, can change simultaneously.

In the field of control performance monitoring, some methods are proposed for covariance change identification. These methods are
based on generalized eigenvalue analysis and statistical inference (Yu and Qin, 2008, 2008). The difference between the proposed method
in this paper for covariance change detection and those mentioned in Yu and Qin (2008, 2008) is that in proposed method, the data are
not divided into monitoring and benchmark period. If the reference or benchmark data are not available, then the proposed approach in
this paper can be a good alternative.

The main contribution of this paper is derivations of EM solution for both single and multiple shifts detection in multivariate data and
in the presence of unknown and changing covariance. This method relies on steady state. As most of the methods in literature for bias
detection, gross error detection, etc. are for steady state conditions. Through simulations and experimental study, it is shown that this
method has satisfactory performance even in the presence of improper selection of priors.

The remainder of the paper is organized as follows. Section 2 gives a preliminary that is needed in the following sections. In Section 3, an
introduction to EM algorithm is provided. EM derivations for single and multiple changes detection in the presence of unknown covariance
is given in Section 4. In Section 5, the EM solution is derived for simultaneous mean and covariance change detection problem. Finally,
simulation results along with an experimental evaluation are provided to validate the proposed algorithms.

2. Preliminary

Assume that in a sequence of independent and identically distributed (i.i.d) data, both mean and covariance are unknown and the
objective is to estimate the mean and covariance of the data. A commonly used prior distribution for covariance matrix is Inverse Wishart
(IW) distribution as

P(�|�0, �0) = |�0|(�0/2)|�|−((�0+p+1)/2) exp(−tr(�0�−1)/2)
2(�0p/2)Z(�0, p)

(1)

where

Z(n, p) = �p(p−1)/4
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