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a  b  s  t  r  a  c  t

An  optimization  framework  that addresses  the  simultaneous  process  and  control  design  of  chemical  sys-
tems including  the  selection  of the control  structure  is presented.  Different  control  structures  composed
of centralized  and  fully  decentralized  predictive  controllers  are  considered  in  the  analysis.  The system’s
dynamic  performance  is quantified  using  a variability  cost  function  that  assigns  a  cost  to  the  worst-case
closed-loop  variability,  which  is calculated  using  analytical  bounds  derived  from  tests  used  for  robust
control  design.  The  selection  of the controller  structure  is based  on  a communication  cost  term  that
penalizes  pairings  between  the  manipulated  and  the controlled  variables  based  on  the  tuning  parame-
ters  of the  MPC  controller  and  the  process  gains.  Both  NLP  and  MINLP  formulations  are  proposed.  The  NLP
formulation  is  shown  to be faster  and  converges  to a similar  solution  to that  obtained  with  the  MINLP
formulation.  The  proposed  methods  were  applied  to  a wastewater  treatment  industrial  plant.
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1. Introduction

Incorporating control decisions during the design phase of a
process is recognized as an effective way to improve process profit-
ability (Kookos & Perkins, 2001; Luyben, 2004; Mohideen, Perkins,
& Pistikopoulos, 1996; Sakizlis, Perkins, & Pistikopoulos, 2004;
Munoz, Gerhard & Marquardt, 2012; Ricardez Sandoval, Budman
and Douglas, 2008). This integrated approach involves the mini-
mization of plant costs related to process design, e.g., capital
and operating costs, and to process control, e.g., variability costs,
dynamic feasibility, and controller implementation. Control deci-
sions related to the design of a new plant, or retrofit of an existing
plant, involves different aspects such as the selection of a suitable
control structure, the specification of the control algorithms to be
included in that control scheme and the calculation of the con-
trollers’ tuning parameters. This paper presents an approach for
the integration of design and control that combines process design-
related costs with these different aspects of control decisions, and
its associated costs, into a single optimization problem.

While the idea of adding control decisions at the design stage
is relatively straightforward, the development of a mathematical
framework that can simultaneously consider steady state and plant
dynamics in a closed loop is a challenging task. Earlier approaches
used for integrating design and control differed in the way  that the
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closed loop performance was  accounted for in the analysis. A first
group of studies involved formulations where the capital and oper-
ating costs are minimized while considering a controllability index
such as the RGA, Resiliency index (Lenhoff & Morari, 1982; Luyben &
Floudas, 1994), condition number (Palazoglu & Arkun, 1986, 1987;
Skogestad & Postlethwaite, 1996) and minimum square deviation
(Molina, Zumoffen, & Basualdo, 2011; Zumoffen & Basualdo, 2013;
Zumoffen, Molina, Nieto, & Basualdo, 2011). While the use of these
indexes is computationally attractive, they may  be inaccurate since
they rely on steady state and/or dynamic linear process models,
which may  not capture the true process (nonlinear) dynamics. In a
second group of approaches that consider the true process (nonlin-
ear) dynamic model, a formal mixed-integer dynamic optimization
problem (MIDO) is formulated to assess the optimal process design
under uncertainty (Bahri, Bandoni, & Romagnoli, 1997; Bansal,
Perkins, & Pistikopoulos, 2002; Kookos & Perkins, 2001; Mohideen
et al., 1996; Sakizlis et al., 2004). In those dynamic, optimization-
based methods the closed loop variability is estimated using the
mechanistic process model and a user-defined, time-dependent
disturbance function with uncertain (critical) model parameters,
e.g., a sinusoidal function with uncertain amplitude and frequency.
Therefore, the designs obtained by these dynamic approaches may
not be valid when the actual disturbance affecting the process devi-
ates significantly from the disturbance function model assumed
in the analysis. Systematic approaches based on process heuris-
tics and dynamic simulations (Gani, Hytoft, Jaksland, & Jensen,
1997) and probabilistic-based disturbances (Ricardez-Sandoval,
2012) have also been proposed in the literature. A review on
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Nomenclature

Indices
i = 1,.  . .,  n controlled variables
j = 1,. . .,  m manipulated variables

Variables
� vector of decision variables of problem (1)
l vector of design variables
ū vector of manipulated variables
ȳ vector of controlled variables
�d closed-loop variability
cefij distribution of the control effort among the different

pairings controlled-manipulated variables
��d

structured singular value norm of disturbances
��u structured singular value norm of manipulated vari-

ables
��y structured singular value norm of controlled vari-

ables
�u manipulated control moves
yp prediction in the output variable y
�j tuning predictive controller parameter: weights on

the manipulated variables
� i tuning predictive controller parameter: weights on

the controlled variables
x vector of system state
zij vector of binary variables for control structure selec-

tion
t time vector
co oxygen concentration in the reactor (mg/l)
fk factor related with turbine speed in the reactor
b biomass concentration in the reactor (mg/l)
bir inlet biomass concentration (mg/l)
bd biomass concentration at the surface of the clari-

fiers, which goes out of the plant (mg/l)
bb biomass in the intermediate layer of the clarifier

(mg/l)
br biomass at the bottom of the clarifier (mg/l)
sr substrate concentration in the reactor (mg/l)
srir substrate concentration in the reactor (mg/l)
v volume of an aeration tank (m3)
A area of the clarifier (m2)
vsd settling rate of the activate sludge which depends

on the biomass concentration at the surface of the
clarifiers

vsb settling rate of the activate sludge which depends
on the biomass concentration at the intermediate
layer of the clarifiers

f inlet flow to the reactor (m3/h)
q2 flow of activate sludge at the output of the clarifier

(m3/h)
qr recycle flow in to the reactor (m3/h)
qp purge flow (m3/h)
q1 outlet flow of the plant (m3/h)
Nu control horizon
Ny prediction horizon

Parameters
ld height of the first layer (m)
lb height of the intermediate layer (m)
lr height of the third layer (m)
cij cost assigned to the ij pairing
k bound on the worst-case output variability

bin inlet biomass concentration (mg/l)
srin inlet substrate concentration (mg/l)
qi inlet flow to the plant (m3/h)
� specific growth rate
	 metabolized substrate fraction that is converted

into biomass
ςs saturation constant
ςd biomass death rate
ςs specific cellular activity
fςd biomass fraction that is converted into substrate
cs oxygen specific saturation
kla oxygen transfer into the water constant
k01 oxygen demand constant
� upper bound
� upper bound in problem
M interconnection matrix
A, B, C state space matrices of the system

Superscripts
d disturbances
u manipulated variable
y process variable
lo lower bound
up upper bound
 input and output variables

previous integration of design and control methodologies can
be found elsewhere, e.g., Ricardez-Sandoval, Budman, & Douglas
(2009a), Sakizlis et al. (2004) and Seferlis and Georgiadis (2004).

A recent approach proposed by two of the authors in this
work, Ricardez-Sandoval, Budman, & Douglas (2009b), Ricardez-
Sandoval, Budman, & Douglas (2010), Ricardez-Sandoval, Douglas,
& Budman (2011), involves a computationally efficient methodol-
ogy that made use of uncertain process models, which are identified
from numerical simulations of the mechanistic process model and
used to compute closed-loop variability bounds that were used
to assign variability costs to the system’s dynamic performance.
However, these latter methodologies were limited since the con-
trol structure considered in the simultaneous design and control
analysis remained fixed during the calculations, i.e., only the con-
troller tuning parameters were included as decision variables for
optimization. Also, only PI feedback controllers were considered
in those studies. The current study expands upon those previous
studies of Ricardez-Sandoval et al. by considering, in addition to
the choice of controller parameters, optimal controller structure
selection and the use of a model-based controller, Model Predictive
Control (MPC), which is widely used in the process industry (Morari
& Lee, 1999). It is important to recognize the specific challenges
arising from the consideration of controller structure selection and
the use of MPC. First, the optimal selection of a control configura-
tion has been generally tackled by the use of binary variables within
a mixed integer problem (Flores-Tlacuahuac & Biegler, 2007, 2008;
Mohideen, Perkins, & Pistikopoulos, 1997; Schweiger & Floudas,
1997) or by considering all possible combinations (Zumoffen &
Basualdo, 2013), which adds numerical difficulty to an already
computationally expensive and highly non-convex optimization
problem. Likewise, the implementation of an MPC-based control
strategy requires the identification of an internal process model.
That internal model needs to be updated at each step in the opti-
mization search since it depends on the optimization variables
related to the plant’s design such as the process units’ dimensions
and their corresponding operating conditions. Thus, using model-
based controllers such as MPC  is more challenging as compared to



Download English Version:

https://daneshyari.com/en/article/172344

Download Persian Version:

https://daneshyari.com/article/172344

Daneshyari.com

https://daneshyari.com/en/article/172344
https://daneshyari.com/article/172344
https://daneshyari.com

