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a  b  s  t  r  a  c  t

For  heat  exchanger  networks  with  stream  splits,  we  present  a  simple  way  of  controlling  the  split
ratio.  We  introduce  the “Jäschke  Temperature”,  which  for  a branch  with  one  exchanger  is defined  as
TJ = (T  −  T0)2/(Th −  T0),  where  T0 and  T are  the  inlet  and  outlet  temperatures  of  the  split  stream  (usu-
ally  cold),  and  Th is the  inlet  temperature  of  the  other  stream  (usually  hot).  Assuming  the  heat  transfer
driving  force  is given  by  the  arithmetic  mean  temperature  difference,  the  Jäschke  Temperatures  of all
branches  must  be  equal  to achieve  maximum  heat transfer.  The  optimal  controlled  variable  is  the  differ-
ence between  the  Jäschke  Temperatures  of  each  branch,  which  should  be controlled  to  zero.  Heat  capacity
or heat  transfer  parameters  are  not  needed,  and no  optimization  is required  to find  the  optimal  setpoints
for  the  controlled  variables.  Most  importantly,  our approach  gives  near-optimal  operation  for  systems
with  logarithmic  mean  temperature  difference  as  driving  force.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Global climate challenges and competition require efficient
energy usage, and this typically implies re-using energy as much as
possible. In the chemical and process industries, large amounts of
energy can be saved by heat recovery in heat exchanger networks,
which transfer energy in form of heat from a set of hot streams to a
set of cold streams. By optimizing layout and operation of these heat
exchanger networks, the overall consumption of natural resources
for heating and cooling can be reduced considerably. In addition,
this often results in significantly reduced operating costs.

The potential of heat exchanger networks for saving energy
and costs has led to a large body of research, and most of the lit-
erature falls into one of two categories. The first category deals
with the design and synthesis of heat exchanger networks (see e.g.
Linnhoff and Flower, 1978; Linnhoff and Hindmarsh, 1983; Saboo
and Morari, 1984; Saboo et al., 1985; Colberg and Morari, 1990;
Yee and Grossmann, 1990; Gundersen et al., 1997; Furman and
Sahinidis, 2002; Laukkanen et al., 2010). Most literature contrib-
utions belong to this category, where some likely conditions and
scenarios are assumed, and the task is to find the optimal type,
size, and structure of interconnections of the heat exchangers.
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Generally this results in large mixed integer optimization prob-
lems, and much of the literature addresses the issue of finding
optimal solutions in an efficient way. Once the network structure
and the size of the heat exchangers are decided, they either can-
not be changed at all at a later point in time, or only at a high cost.
The design step is therefore very important for the efficiency of the
network.

The second category, where this work is placed in, deals
with optimal operation of heat exchanger networks (Aguilera and
Marchetti, 1998; Glemmestad et al., 1999; Rodera et al., 2003;
Lersbamrungsuk et al., 2008). This category is complementary to
the first one, as a good design does not imply good operation in
terms of the benefits being actually achieved. In particular, finding
optimal process operation strategies is important, because the con-
ditions in the real plant generally differ from those assumed during
the design stage. Even if the actual operating conditions are the
same as assumed during plant design, Jensen and Skogestad (2008)
showed that because of simplifying assumptions during design, like
fixing the minimum temperature difference �Tmin to 10 K, the opti-
mal  design point is often not the same as the optimal operating
point. The contributions from this second category study how the
available degrees of freedom, such as valves, bypasses and utility
heaters, can be used to optimally match the real operating con-
ditions and constraints. Although there has been some research
activity in this area, there is still a need for simple methods to
optimize operation of heat exchanger networks. The objective of
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this paper is therefore to provide an approach which leads to near-
optimal operation of certain heat exchanger networks.

When implementing optimal operation in a process, such as
heat exchanger networks, there are two fundamental model-based
approaches which can be taken: Online optimization and offline
optimization. In online optimization (Grötschel et al., 2001), the
model is used to formulate an optimization problem, which is
repeatedly solved online in a fast optimization software. The opti-
mal  input values obtained from the software are then applied to the
plant. In this approach, the plant measurements are primarily used
for adjusting model parameters, such that the model and the plant
match. This approach may  be implemented using a steady state
model (Marlin and Hrymak, 1997; Lid et al., 2001), or alternatively
a dynamic model (Grötschel et al., 2001). Implementing online opti-
mization is relatively expensive due to the high costs of obtaining
and maintaining a good process model, which can be optimized in
real-time. However, if a good model is available, this approach can
yield results which are very close to the true optimum. Due to the
high costs, it is mainly implemented in cases where the immediate
economic benefits are very high, such as refineries.

The alternative offline optimization approach exploits the struc-
ture of the optimal solution. This results in simple operating
schemes which do not require online solution of optimization prob-
lems. The basic idea was first conceived by Morari et al. (1980), who
write that “we want to find a function c of the process variables
[. . .]  which when held constant, leads automatically to the optimal
adjustment of the manipulated variables, and with it, the optimal
operating conditions.” This idea has been followed in the paradigm
of self-optimizing control, where such variables are found in a sys-
tematic manner, and in NCO-tracking, where these variables are
the necessary optimality conditions (NCO) (Mathisen et al., 1992;
Skogestad, 2000; Srinivasan and Bonvin, 2004; Lersbamrungsuk
et al., 2008; Jäschke and Skogestad, 2011, 2012a). Although typi-
cally some degree of sub-optimality will have to be tolerated, these
approaches are attractive in practice, because they are simple and
easy to implement.

Considering the structure of the optimal solution, the steady
state optimal operating point of heat exchanger networks without
stream splits and with only single bypasses and utilities as manip-
ulated variables, is characterized by being at constraints (Aguilera
and Marchetti, 1998; Lersbamrungsuk et al., 2008), and can be
described by a linear programming problem. In this case all degrees
of freedom are used to specify target temperatures or are kept at
constraints (e.g. bypass valves are used to control a target tempera-
ture, or are either fully open or fully closed). The problem of optimal
operation is then reduced to finding and tracking the set of active
constraints (Lersbamrungsuk et al., 2008), which often can be done
without online optimization.

In this paper we study heat exchanger networks with stream
splits, where the steady state optimal operating point is generally
unconstrained. A simple example for such a system is shown in
Fig. 1, where a cold stream F0 is split into two branches, which each
are heated individually by hot streams.

The operational objective is to maximize the total heat transfer,
or equivalently to maximize the temperature after mixing, Tend.
Here, the split fraction must be continuously adapted to match
varying operating conditions such as changing inlet temperatures
(T0, Th1,1, Th1,2), flow rates (F0, Fh1,1, Fh1,2), and heat transfer proper-
ties (UA1,1, UA1,2). In practice, these cases are either handled by an
online optimization approach (Lid et al., 2001), when the potential
savings are very high, or simply operated in an open-loop fash-
ion, where the split ratio is set to some constant. Other ad-hoc
solutions include isothermal mixing and controlling some outlet
temperatures to a setpoint. These solutions are suboptimal.

The contribution of this paper is to present a simple method
for optimizing operation of heat exchanger networks with stream
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Fig. 1. Simple heat exchanger network with one split. The boxed variables are
needed for obtaining the Jäschke Temperatures.

splits. For each branch we  define a “Jäschke Temperature”, and
near-optimal operation is achieved by adjusting the split between
the branches in such a way  that the Jäschke Temperatures of all
branches are equal. The results have been submitted for patent-
ing (Jäschke and Skogestad, 2012c). Nevertheless, the derivation is
of interest for the scientific community and deserves the separate
discussion provided in this paper. Our paper also fits nicely into
this Morari special issue, because of his early important work on
heat exchanger networks (Saboo and Morari, 1984) and optimal
operation (Morari et al., 1980).

To obtain our results, we follow the general approach described
by Jäschke and Skogestad (2012b): We  set up a simple model,
formulate the optimality conditions, and then eliminate the
unmeasured variables from the optimality conditions. The obtained
expression is a function of measurements only, and controlling it is
equivalent to controlling the optimality conditions.

Note that the results in this paper also are applicable when a hot
stream is split into parallel streams which are cooled down individ-
ually. To simplify the presentation, however, we present only the
case, where the parallel streams are heated.

This paper is organized as follows: In Section 2 we provide rel-
evant background material on optimality conditions for parallel
systems, and Section 3 describes the network topology and heat
exchanger model used in this work. The main results are presented
in Section 4, and Section 5 contains some case studies to demon-
strate the applicability of our results. Finally, the paper is closed
with a discussion and conclusions in Sections 6 and 7.

2. Optimality conditions for parallel systems

Let us start by considering a smooth general optimization prob-
lem. After the active constraints are satisfied (e.g. by control) we
can describe optimal operation as an unconstrained optimization
problem,

min
u

J(u). (1)

Here u ∈ R
nu denotes the unconstrained degrees of freedom. To

fully specify operation, we need as many controlled variables c as
there are degrees of freedom u, nc = nu.

Consider now a system with the topology given in Fig. 2, with
N parallel streams Fj which are branched off a given common feed
stream F0. The total operating cost J of the system is assumed to be
the sum of the individual scalar costs Jj from each line j,

J =
N∑

j=1

Jj(Fj), (2)
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