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a  b  s  t  r  a  c  t

The  development  of  control-oriented  decision  policies  for inventory  management  in  supply  chains  has
drawn  considerable  interest  in  recent  years.  Modeling  demand  to  supply  forecasts  is an  important  com-
ponent  of an  effective  solution  to this  problem.  Drawing  from  the  problem  of  control-relevant  parameter
estimation,  this  paper  presents  an  approach  for demand  modeling  in  a production-inventory  system
that relies  on  a specialized  weight  to tailor  the  emphasis  of  the  fit  to the  intended  purpose  of  the  model,
which  is to  provide  forecasts  to  inventory  management  policies  based  on  internal  model  control  or  model
predictive  control.  A systematic  approach  to  generate  this  weight  function  (implemented  using  data  pre-
filters  in  the  time  domain)  is  presented  and the benefits  demonstrated  on  a series  of representative  case
studies.  The  multi-objective  formulation  developed  in this  work  allows  the  user  to  emphasize  minimiz-
ing  inventory  variance,  minimizing  starts  variance,  or their  combination,  as  dictated  by operational  and
enterprise  goals.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Among the wealth of contributions made by Manfred Morari
to the field of control engineering include examining issues relat-
ing to the interplay between control design and modeling (Morari
and Zafiriou, 1989). Many years’ ago the corresponding author had
the privilege to work under Professor Morari in researching this
problem in the context of PID control design using internal model
control (IMC) (Rivera et al., 1986) and model reduction for con-
trol purposes in general (Rivera and Morari, 1987, 1990, 1992). We
are more than pleased to present this work on demand modeling
in supply chains as an extension of Manfred Morari’s outstanding
legacy.

Supply chain management represents a fascinating though
unconventional problem domain in control engineering. Control-
oriented approaches have been proposed to address the inventory
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management problems inherent in supply chains (Schwartz et al.,
2006; Sarimveis et al., 2008). The production-inventory sys-
tem represents a unit level of a supply chain whose study can
shed many insights. Schwartz and Rivera (2010) have shown
that an effective decision policy for this problem is a combined
feedback–feedforward control structure which can be developed
using either IMC  or Model Predictive Control (MPC)-based formu-
lations. In these approaches, demand (or more specifically, change
in demand) is treated as an exogenous “disturbance” signal that
must be properly “rejected” by a sensibly designed control sys-
tem. Schwartz and Rivera (2010) show that accurate modeling and
prediction of demand serves an important role in obtaining good
control performance and meeting operational goals. However, a
fundamental understanding of how demand models and forecasts
should be estimated for the sake of control-oriented supply chain
management policies has not been properly examined.

Accurately modeling customer demand has presented a chal-
lenge to the business community for many decades. The earliest
approaches to demand modeling included polynomial extrapola-
tion and identifying periodic variations such as seasonal or daily
effects (Lewis, 1997). The use of time-series analysis to identify
trends in demand signals is well treated in the literature (Pankratz,
1991; Box et al., 1994). These approaches seek to minimize the
error between a prediction and actual demand in a least-squares
sense. In this paper we extend these ideas by introducing the idea of
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developing a control-relevant model for customer demand, in
essence a dynamical systems model that is tailored to the decision
policy used for inventory control.

The presence of error in a demand forecast will adversely affect
decision-making in a supply chain. While eliminating all sources
of error from demand forecasts is impossible, it may  be possible to
mitigate their detrimental effects. The requirements for inventory
control can be used to specify the frequency bands over which an
adequate model fit is necessary. Specifically, if information about
the end use of the forecasting model can be incorporated in the
parameter estimation stage, it is then possible to obtain model that
have improved accuracy over the relevant frequency bands. This
goal philosophically parallels the objectives of the control-relevant
parameter estimation problem (Rivera and Morari, 1987; Rivera
et al., 1992) which was primarily developed for estimating the plant
models for feedback-only control.

Drawing from control-relevant parameter estimation prin-
ciples, this paper examines the relationship between demand
forecast error and changes in inventory and starts for control-
oriented decision policies in a production-inventory system. The
demand modeling issues considered in this paper are approached
in two distinct ways. First, we present a control-relevant model
reduction problem for an Internal Model Control-based decision
policy. In this problem formulation we assume that the true, full-
order continuous-time demand model is available (or its frequency
response) but it must be reduced to a more manageable, parsimo-
nious structure. The full-order demand model may have been the
result of prior modeling efforts, or an accurate frequency response
has been generated from data using identification approaches such
as the empirical transfer function estimate (ETFE) or high-order
AutoRegressive with eXternal input (ARX) estimation (Ljung, 1999).
In the second problem formulation, a control-relevant demand
modeling framework meaningful for a Model Predictive Control
(MPC) based decision policy is developed. In this case a discrete-
time demand model is estimated directly from data using classical
prediction-error models from system identification. Here a control-
relevant filter is applied to input and output forecast data to obtain a
restricted complexity demand model that is tailored to supply chain
objectives. Three detailed numerical examples drawing on conven-
tional problems in production-inventory systems (as described in
Schwartz and Rivera, 2010) are presented in support of these two
problem formulations.

This paper begins with some background on the use of process
control ideas for supply chain management; a brief overview of
the fluid analogy and IMC  and MPC  as decision policies for inven-
tory management is presented in Section 2. Section 3 shows how
control-relevant demand model reduction can be applied through
frequency-weighted curvefitting. Section 4 extends the work to
the discrete-time domain by performing control-relevant system
identification using prefiltering. The paper ends with conclusions
presented in Section 5.

2. Supply chain management background

2.1. Fluid analogy for production-inventory systems

A fluid analogy for a standard single-product production-
inventory system, the simplest unit in a supply chain, is shown in
Fig. 1. Fluid analogies represent meaningful descriptions of supply
chains associated with high volume manufacturing problems
at sufficiently long time scales (for instance, in daily or weekly
decision-making). This applies to discrete-parts manufacturing
problems such as semiconductor manufacturing (Braun et al.,
2003; Wang and Rivera, 2008). The output of a factory is stored
in a warehouse where it awaits shipments to customers (retailers,

Fig. 1. Fluid analogy for a classical production-inventory system.

distributors, etc.). The warehouse serves as a buffer in the presence
of stochastic, uncertain customer demand and factory output.

The factory is modeled as a pipe with a particular throughput
time � and yield K. Inventory is modeled as material (fluid) in a
tank. Delivery from the warehouse is modeled as a pipe with a
transportation time �d. Customer demand is treated as a disturb-
ance signal at the tank outlet, which contrasts with traditional level
control problems where the outflow is manipulated to control the
fluid level subject to disturbances at the inflow (Ogunnaike and
Ray, 1994; Seborg et al., 2004). Applying the principle of conserva-
tion of mass to this system leads to a differential equation relating
net stock (material inventory, y(t)) to factory starts (input pipe
flow, u(t)) and customer demand (output tank flow, d(t)) which
is represented by the following equation:

dy

dt
= Ku(t − �) − d(t) (1)

Based on (1) it is possible to derive feedback-only decision poli-
cies that manipulate factory starts to maintain inventory level at
a designated setpoint. However, if knowledge of future customer
demand is available, it is advantageous to use feedforward compen-
sation. Customer demand d(t) is treated as a disturbance signal at
the tank outlet, and consists of the sum of forecasted demand (dF(t),
known �F days ahead of time), forecast error de

F (t), and unforecasted
demand dU(t), as shown below:

d(t) = dF (t − �F ) + de
F (t − �F )︸  ︷︷  ︸

dideal
F

(t−�F )

+ dU(t) (2)

dideal
F (t) = dF (t) + de

F (t) represents the ideal forecast signal. The
demand forecast dF is generated from a demand model P̃f (s)

dF (s) = P̃f (s)fi(s) (3)

which is a function of a disturbance input fi. fi represents any mea-
surement signal that can be used as an input to predict future
demand, for example, an economic indicator. The demand forecast
error de

F represents a signal that should be minimized according to
some criterion,

de
F (s) = dideal

F (s) − dF (s) = Ef (s)fi(s) (4)

with Ef = Pf − P̃f representing the demand modeling error that we
hope to reduce in a control-relevant manner. The dynamical system
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