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a  b  s  t  r  a  c  t

This paper  provides  a comprehensive  overview  of  research  related  to computational  complexity  of  struc-
tured singular  value  (a.k.a.  �)  problems.  A survey  of computational  complexity  results  in  �  problems  is
followed by  a concise  introduction  to computational  complexity  theory  that  is  useful  to  characterize  the
inherent  difficulty  of solving  an  optimization.  Results  on  the  study  for NP-hardness  of �-approximation
of  �  problems  are  discussed  and  conservatism  of  convex  � upper-bounds  including  ones  obtained
from  absolute  stability  theory  is  studied.  NP-hardness  of � computation  and  conservatism  of  convex
upper-bounds  open  new  research  trends. In  particular,  we give  an  overview  of polynomial-time  model
reduction  methods  and probabilistic  randomized  algorithms  that have  been  active  research  topics  since
the  mid-1990s.

© 2013  Elsevier  Ltd.  All rights  reserved.

1. Introduction

The structured singular value � has been used to study robust
stability and performance of dynamic systems with real paramet-
ric and dynamic uncertainties. Pioneer works by Doyle (1982) and
Safonov (1982) led persistent research interest in computations of
robust stability margin and achievable robust performance indices.
In robust stability and performance analysis based on structured
singular value theory, all possible variations in the plant behavior
are considered within a specific structure and the deterministic
worst-case scenario determines the values of � and robustness
margin1 that is the inverse of �. In this framework for comput-
ing the robustness margin of multivariable systems, the value of
� quantifies the bounds of uncertainties that are simultaneously
expanded until the system first becomes unstable for some uncer-
tainty from the set.

Historically, Horowitz (1963) proposes a graphical approach
that maps the bounded parameteric uncertainty domain into
Nyquist-plot domain for robust stability analysis of a single-input
single-output (SISO) feedback system in the presence of uncertain
gains, phases, and parameters subject to perturbations within pre-
scribed bounds. Zames (1966a, 1966b) uses functional methods for
robust and absolute stability analyses of input–output problems
where two elements of the system representation are feedback
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1 Robustness margin refers to robust stability or performance of a system.

interconnected. He finds conditions on each element in a so-called
conic relation stability theorem that ensure the overall loop will
remain stable when they are feedback interconnected. Safonov and
Athans (1977) and Safonov (1980) extend Zames’ conic relation sta-
bility theorem to multi-input multi-output (MIMO) systems and
characterize sets of feedback laws in terms of sets of possible plant
dynamics. Both of Zames’ and Safonov’s approaches are based on
the concept of topological separation. They show that the feed-
back interconnection of two  element H1 and H2 is robustly stable
if and only if the graph of H1 and the inverse graph of H2 are topo-
logically separated for any variations of H1 and/or H2 within the
prescribed bounds. The main goal in this concept of robust stability
is to find a separator or a set of separators that characterizes the
input–output relation (i.e., graph) of either of the system elements
H1 or H2. Similar approaches have been investigated and further
developed by many researchers including Goh and Safonov (1995)
(IQC separator), Rantzer and Megretski (1994) and Megretski and
Rantzer (1997) (IQC theory), Scherer (1997, 2001) (Full-block S-
procedure), and Iwasaki and Hara (1998) (Quadratic separator), to
name a few. While they usually consider more general classes of
uncertainties such as time-varying nonlinear functions, topological
separation based robust stability analysis can be used to compute
the upper-bounds on �-calculations.

In addition to topological approaches to robustness analysis,
an algebraic approach is found by Kharitonov (1978) and Bialas
and Garloff (1985). They propose a stability criterion for uncertain
polynomials in which the coefficients are independently vary-
ing in certain bounded intervals. This approach, however, is not
applicable to general robust stability analysis, since most cases

0098-1354/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2013.09.018

dx.doi.org/10.1016/j.compchemeng.2013.09.018
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2013.09.018&domain=pdf
mailto:kwangki@mit.edu
mailto:braatz@mit.edu
dx.doi.org/10.1016/j.compchemeng.2013.09.018


K.-K.K. Kim, R.D. Braatz / Computers and Chemical Engineering 70 (2014) 122–132 123

of robustness problems have the coefficients of the characteris-
tic polynomial that are interdependent. The robustness problems
based on Lyapunov’s method of stability have a substantial history,
but they are beyond the scope of this paper and we, instead, refer
the readers to research monographs in nonlinear system theory
(Khalil, 2002; Vidyasagar, 1993).

Apart from reviewing historical development of robust anal-
ysis in control theory, the principal purpose of this paper is to
provide a comprehensive overview of research related to compu-
tational complexity of �-calculation problems and some of their
descendants. As the structured singular value provides a way  to
measure the exact robustness of many classes of structured uncer-
tain systems, there have been numerous research efforts to develop
efficient algorithms for computing �. Several researchers inde-
pendently show that the exact �-calculations for systems with
real (Braatz, Young, Doyle, & Morari, 1994; Coxson & DeMarco,
1994; Nemirovskii, 1993; Poljak & Rohn, 1993), mixed (Braatz
et al., 1994), and complex (Toker & Özbay, 1998) uncertainties are
NP-hard problems. After the exact �-calculations are proven to
be NP-hard, it is shown that arbitrarily close approximations to
the exact � are also NP-hard problems for systems with real (Fu,
1997) and mixed (Braatz & Russell, 1999) uncertainties. Conser-
vatism of some � upper bounds is investigated by many researchers
(Megretski, 1993a, 1993b; Megretski & Treil, 1993; Rump, 2001;
Treil, 2000). Probabilistic randomized algorithms (Khargonekar &
Tikku, 1996; Stengel & Ray, 1991; Tempo, Calafiore, & Dabbene,
2005; Vidyasagar, 1997, 1998; Vidyasagar & Blondel, 2001) to
compute robustness margin are alternative approaches in which
uncertainties are considered as random variables and robustness is
evaluated in the probabilistic sense. The volume ratio of the set of
destabilizing uncertainties to the whole compact uncertainty set is
analytically or approximately computed with respect to a specific
probability measure. In particular, sampling-based approximation
approaches provide certain levels of accuracy and confidence in
the obtained answers to robust stability and performance, which
depend on the number of scenarios simulated. Polynomial-time
dimension reduction methods (Beck, Doyle, & Glover, 1996; Russell
& Braatz, 1998; Russell, Power, & Braatz, 1997) are also used to
reduce the computational burden of calculating � for large-scale
systems.

In addition to robustness margin computation problems, there
have been also many research efforts to study computational com-
plexity of problems related to systems and control theory. Blondel
and Tsitsiklis (2000) provide a complete survey of computational
complexity results in system and control up to 2000. In particular,
many important control problems can be formulated as bilinear

matrix inequalities (BMIs) (see VanAntwerp & Braatz, 2000, for a
review of such problems) and the problem of checking solvability
of a BMI  is NP-hard (Toker & Ozbay, 1995). DK-iteration for con-
troller design using an upper-bound of � is equivalent to finding a
local solution for a BMI  problem via alternatively freezing decision
variables at each iteration step.

This paper is organized as follows. We  first provide, in Section 2,
a concise, but complete introduction to computational complex-
ity theory that is able to characterize the inherent difficulty of
checking solvability or calculating a solution for a problem under
study. Several NP-complete and NP-hard problems that are used
to study computational complexity of �-calculation are presented.
Section 3 overviews results on computational complexity of exact
�-calculation problems and shows the theoretical developments
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Fig. 1. Feedback interconnected system.

of research on computational complexity of different classes of
�-calculations and the connections of existing results. Section 4
presents results on the study of computational complexity of
approximate �-calculation problems. A correct definition for �-
approximation problems is given and several available results on
NP-hardness of �-approximation of � problems are presented.
Section 5 studies the conservatism of robust stability margin com-
putation using � upper-bound which is a convex problem. Some
results showing that approximate upper-bounds can be arbitrarily
conservative are presented. Followed by NP-hardness of � compu-
tation and conservatism of convex upper-bounds that all consider
deterministic worst-cases, alternative approaches to assess robust-
ness of a system are investigated. In Section 6, polynomial-time
model reduction methods and probabilistic randomized algorithms
to compute robustness margins are reviewed, among many alterna-
tive approaches of � computation. Section 7 concludes this paper.
For easy reference, the results are displayed in the form of theorems,
while most of the presented results are extracted from existing
works.

Notation. Define the set of matrices of block-diagonal pertur-
bations given by

� �
{

diag(ır
1Ir1 , . . .,  ır

kIrk
, ıc

k+1Irk+1 , . . .,  ıc
mIrm , �rm+1 , . . ., �rmC

) :

ır
i ∈ R, ıc

i ∈ C, �i ∈ Cri×ri ,
∑

ri = �
}

(1)

and B� is the set of unity norm-bounded perturbations from �.
For a given matrix M ∈ Cm×m, the structured singular value

(Doyle, 1982; Fan, Tits, & Doyle, 1991) is defined as

��(M)  �

{
0 if there exists no � ∈ � such that det(I − M�) = 0

(min
�∈�
{�(�) : det(I − M�) = 0})−1 otherwise (2)

in which more general classes of structured uncertainties can be
handled without introducing any further conservatism. Without
loss of generality we have taken M and each subblock of � to be
square. In this context, ��(M) defines a measure of the smallest
structured �� ∈ � that destabilizes of the feedback interconnected
system depicted in Fig. 1 and the norm of this destabilizing uncer-
tainty �� is quantified as (��(M))−1.

The set of real numbers is R; the set of complex numbers is C,
and the set of rationale is Q.  AT and A* refer to the transpose and
the conjugate transpose of A, respectively. The Euclidean 2-norm
of vector x is defined by ‖x‖2 =

√
xTx and the vector ∞-norm of

x is defined by ‖x‖∞ = max
i
|xi|. For a vector x ∈ Cn, |x| = [|x1|, . . .,

|xn|]T denotes the vector of absolute values of its entries. The max-
imum singular value of matrix A is represented by �(A), and I is
the identity matrix of compatible dimension. An 0 will be used
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