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a  b  s  t  r  a  c  t

State  estimation  is  a crucial  part  of the  monitoring  and/or  control  of  all chemical  processes.  Among  various
approaches  for  this  problem,  moving  horizon  estimation  (MHE)  has the  advantage  of  directly  incorpo-
rating  nonlinear  dynamic  models  within  a well-defined  optimization  problem.  Moreover,  advanced  step
moving  horizon  estimation  (asMHE)  substantially  reduces  the  on-line  computational  expense  associ-
ated  with  MHE.  Previously,  MHE  and  asMHE  have  both  been  shown  to  perform  well when  measurement
noise  follows  some  known  Gaussian  distribution.  In this  study  we extend  MHE  and  asMHE  to  consider
measurements  that  are  contaminated  with  large  errors.  Here  standard  least  squares  based  estimators
generate  biased  estimates  even  with  relatively  few  gross  error  measurements.  We therefore  apply  two
robust  M-estimators,  Huber’s  fair function  and Hampel’s  redescending  estimator,  in order  to  mitigate  the
bias  of  these  gross  errors  on  our  state  estimates.  This  approach  is demonstrated  on  dynamic  models  of  a
CSTR and  a distillation  column.  Based  on this  comparison  we  conclude  that  the  asMHE  formulation  with
the  redescending  estimator  can  be used  to get  fast  and  accurate  state  estimates,  even  in the  presence  of
many  gross  measurement  errors.

©  2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Improvement of on-line operation of chemical processes
requires accurate knowledge of the current state of the system. This
is particularly true for strategies that rely on first-principles models
of the chemical plant, such as model predictive control (Rawlings
& Mayne, 2009) or real-time optimization (Forbes & Marlin, 1996).
Complicating factors that make real time state estimation challeng-
ing include the impracticality or infeasibility of measuring every
state of a process directly, and delays that arise from measurements
that take a significant amount of time to obtain.

Assuming that sufficient plant measurements can be obtained
in real-time, one now needs to use these measurements to obtain
the states of the system. This can be done by developing a model
of the process which includes relationships between the measured
and unmeasured state variables along with variables to estimate
plant-model mismatch, unknown disturbances, and measurement
noise. With this model several state estimation approaches can be
applied; these approaches differ by assumptions they make about
the linearity or nonlinearity of the plant model and the probabil-
ity distribution of the error and noise variables. State estimation
and the closely related topic of data reconciliation have been
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studied under a broad variety of assumptions. For nonlinear sys-
tems, the extended Kalman filter (EKF) (Bryson & Ho, 1975) is
commonly applied in practice. While EKF is relatively easy to imple-
ment, it has been shown to have poor performance for highly
nonlinear systems (Daum, 2005; Prakash, Patwardhan, & Shah,
2010). Related estimation methods that also deal with nonlinear
systems include the unscented Kalman filter (Julier, Uhlmann, &
Durrant-Whyte, 2000), the ensemble Kalman filter (Burgers, van
Leeuwen, & Evensen, 1998; Evensen, 1994; Houtekamer & Mitchell,
1998), and the particle filter (Arulampalam, Maskell, Gordon, &
Clapp, 2002; Chen, 2003). While each of these methods has pros and
cons, one common drawback is their inability to deal with bounds
on the states. Ignoring these constraints can lead to an increase in
the estimation error or the divergence of the estimator (Haseltine
& Rawlings, 2005). On the other hand, heuristic strategies, such
as clipping, can greatly reduce the performance of the estimator.
Other remedies to handle constrained nonlinear state estimation
include nonlinear recursive dynamic data reconciliation (Vachhani,
Rengaswamy, Gangwal, & Narasimhan, 2004), unscented recur-
sive nonlinear dynamic data reconciliation (Vachhani et al., 2004;
Vachhani, Narasimhan, & Rengaswamy, 2006), the constrained
ensemble Kalman filter (Prakash et al., 2010), and the constrained
particle filter (Prakash, Shah, & Patwardhan, 2008).

In contrast to the above estimators, the state estimation prob-
lem can be formulated directly as a nonlinear programming (NLP)
problem. Here we  consider moving horizon estimation (MHE)
(Michalska & Mayne, 1995; Muske & Rawlings, 1993; Rao, 2000;
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Nomenclature

Mi molar hold-up on tray i
Vi vapor flow rate leaving tray i
Li liquid flow rate leaving tray i
Fi feed flow rate entering tray i
D distillate flow rate from condenser
B bottoms flow rate from reboiler
R reflux ratio
xi mole fraction of methanol in liquid on tray i
yi mole fraction of methanol in vapor on tray i
zf,i mole fraction of methanol in feed entering tray i
Pi total pressure on tray i
Ps

i,j
vapor pressure of component j on tray i

Ti temperature on tray i
Aj, Bj, Cj Antoine’s equation constants for component j
˛i tray i efficiency
hL

i
liquid enthalpy on tray i

hV
i

vapor enthalpy on tray i

h
L
i,j liquid enthalpy for pure component j on tray i

h
V
i,j vapor enthalpy for pure component j on tray i

QR reboiler heat duty
Qloss reboiler heat loss
QC condenser heat duty
nv

i
liquid volume holdup on tray i

Vm
i

molar volume of liquid on tray i

V
m
i,j molar volume of pure component j on tray i

Wi Weir constant for tray i
nv,ref

i
volume of tray i

Robertson, Lee, & Rawlings, 1996), which uses a batch of past
measurements to find the optimal state estimates. MHE  has been
shown to have very desirable asymptotic stability properties (Rao,
Rawlings, & Mayne, 2003) and often performs better than EKF
(Haseltine & Rawlings, 2005). In addition, constraints and bounds
on plant states are handled directly by the NLP solver. On the other
hand, computational delay is a major drawback for implementing
MHE  in an industrial setting (Ramlal, Allsford, & Hedengren, 2007).

A nice overview of methods for state estimation is given in
Rawlings and Bakshi (2006), where it is noted that computational
complexity still remains a significant challenge. Efficient algo-
rithms for MHE  include work done by Ohtsuka and Fujii (1996)
and Tenny and Rawlings (2002). More recently, an MHE  based real-
time iteration approach has been investigated in Kühl, Diehl, Kraus,
Schlöder, and Bock (2011). Additionally, Abrol and Edgar (2011)
applied an in situ adaptive tabulation based MHE  for on-line state
estimation. In this work we make use of a fast MHE strategy based
on NLP sensitivity developed by Zavala, Laird, and Biegler (2008a).

Another important factor for state estimation is the robustness
of our estimate. Sensors can fail or be contaminated in such a way
that their measurements are vastly different from the true plant
state. In this work we reduce the influence of bad measurements
in state estimation through a data reconciliation and gross error
detection framework. A summary of early work done in this field is
given in Crowe (1996). Recent reviews of the state of the art in out-
lier detection can be found in Hodge and Austin (2004), Kadlec,
Gabrys, and Strandt (2009) and Chandola, Banerjee, and Kumar
(2009). General approaches to gross error detection include prin-
cipal component analysis (Tong & Crowe, 1995), cluster analysis
(Chen & Romagnoli, 1998), artificial neural networks (Vachhani,
Rengaswamy, & Venkatasubramanian, 2001), and robust statistics
(Özyurt & Pike, 2004).

Related work has also been done in the process control liter-
ature, including investigating sensor faults and fault tolerance. A
thorough review of work in this area can be found in Zhang and
Jiang (2008). Of particular relevance to this work is the study of
Chen and You (2008) that considers fault-tolerant sensor system
for noisy or drifting sensors. However, it should be noted that in
this work we are considering strategies to mitigate the effects of
gross error measurements and not to explicitly detect or identify
bad measurements.

In this study we  consider the moving horizon estimation (MHE)
formulation (Rao, 2000) as well as its extension called advanced
step moving horizon estimation (asMHE) (López Negrete, 2011;
Zavala et al., 2008a). Both strategies are described in more detail
in Section 2. The main contribution of this work is to extend these
formulations using robust M-estimators in order to mitigate the
effect of gross errors and make our state estimates more robust.
A brief overview of robust statistics and M-estimators is given in
Section 3. Section 4 provides details on how the simulations done
in this study were implemented. In Section 5 we compare the per-
formance of various MHE  formulations on a small dynamic model
of a non-isothermal CSTR. Section 6 then examines a much larger
example of a binary distillation column. Finally, a summary and
conclusions are given in Section 7.

2. State estimation formulation

As mentioned in Section 1, there are many ways to approach the
state estimation problem. In this paper we  focus on its formulation
as a nonlinear optimization problem. The formulations used in this
work are briefly described below.

2.1. Moving horizon estimation

Moving horizon estimation (MHE) (Rao, 2000) is a well known
strategy for constrained state estimation. The overall idea with
MHE  is to estimate the current state of the system using only the
last N states and measurements directly, where we refer to N as
the horizon length. In other words, we split time into two  sets
T1 = {l|0 ≤ l < k − N} and T2 = {l|k − N ≤ l ≤ k} where k is the current
time step. The NLP associated with this formulation is shown below.
Notice that the summation terms in the objective function are only
over T2.

{ẑk−N|k, . . ., ẑk|k} = arg min
{zk−N ,...,zk}

�(zk−N) + 1
2

l=k∑
l=k−N

vT
l R−1

l
vl

+ 1
2

l=k−1∑
l=k−N

wT
l Q−1

l
wl

s.t. zl+1 = f (zl) + wl,

yl = h(zl) + vl

zLB ≤ zl ≤ zUB, l ∈ T2 (1)

where {ẑk−N|k, . . ., ẑk|k} refers to the optimal state estimates at each
time step in the horizon. Also, �(zk−N) = ||zk−N − ẑk−N|k−1||2

�̂−1
k−N|k−1

is the arrival cost and represents all the information in T1, which
is not included in the horizon. vl is the vector of measurement
noise, Rl is the covariance matrix of the measurement noise, wl

is the vector of unknown disturbances, and Ql is the covariance
matrix of the unknown disturbances. Also, the equality constraints
are a state-space model of the plant where h(zl) is the measure-
ment model and f(zl) is the system model. Additionally, bounds
can be added to the states. A key assumption behind this formula-
tion is that the measurement noise and unmeasured disturbances
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