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a  b  s  t  r  a  c  t

We  present  the  design  of an  analog  circuit  which  solves  linear  programming  (LP) or  quadratic  program-
ming  (QP)  problem.  In  particular,  the  steady-state  circuit  voltages  are  the  components  of the  LP  (QP)
optimal  solution.  The  paper  shows  how  to  construct  the circuit  and  provides  a proof  of equivalence
between the  circuit  and  the  LP  (QP)  problem.  The  proposed  method  is  used  to implement  an  LP-based
Model  Predictive  Controller  by using  an  analog  circuit.  Simulative  and  experimental  results  show  the
effectiveness  of the  proposed  approach.
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1. Introduction

In 2002, Bemporad, Morari, Dua, and Pistikopoulos showed
how to compute the solution to constrained finite-time optimal
control problems for discrete-time linear systems as a piecewise
affine state-feedback law (Bemporad, Morari, Dua, & Pistikopoulos,
2002; Bemporad, Borrelli, & Morari, 2002b). Such a law is com-
puted off-line by using a multi-parametric programming solver
which divides the state space into polyhedral regions, and for each
region determines the linear gain and offset which produces the
optimal control action. This state-feedback law is often referred to
as the “explicit solution”. Since many control problems belong to
this class, either in their natural form or after an approximation
and abstraction step, their solution has been studied for decades.
However, until that work, as there was no knowledge about the
functional form and structure of closed form solutions, computa-
tions resorted to some approximation such as gridding or functional
interpolation.

Enlightened by that breakthrough, Morari’s research group
started developing a new theory for optimal control of discrete-
time linear systems, constrained linear systems, and hybrid
systems. The theory (1) unveils the existence and the properties
of the closed form solutions (Bemporad, Borrelli, & Morari, 2002a,
2003; Borrelli, 2003; Borrelli, Baoti, Bemporad, & Morari, 2005;
Grieder, Borrelli, Torrisi, & Morari, 2004; Maeder, Borrelli, & Morari,
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2009; Morari, Baotic, & Borrelli, 2003), (2) explains the effect of
uncertainties on the control of constrained systems (Bemporad
et al., 2003; Borrelli, 2003), (3) shows how to use linear and
nonlinear multiparametric-programming to compute the closed
forms solutions (Bageshwar & Borrelli, 2009; Bemporad et al.,
2002a; Borrelli, Bemporad, & Morari, 2003) and (4) sheds light on
the tight link between the desired optimality and the robustness
of closed-loop systems and what can actually be achieved on
resource-constrained embedded control hardware (in terms of
CPU and storage) (Borrelli, Baoti, Pekar, & Stewart, 2010; Borrelli,
Falcone, Pekar, & Stewart, 2009). The theory also simplifies and
unifies much of the previous work for special classes of systems. In
particular, it reduces to the well known Linear Quadratic Regulator
for unconstrained linear systems. As an example, now we  know the
answer to the question “What is the solution to an LQR problem
if the system states and inputs are constrained?”. In Borrelli et al.
(2005) it was shown that the state feedback control law is continu-
ous and piecewise affine and that the value function is convex and
continuously differentiable. For hybrid systems, it was also shown
that the optimal control law is, in general, piecewise affine over
non-convex and disconnected sets. The class of hybrid systems
for which these results apply is very large including systems with
both internal and/or controllable switches (Borrelli et al., 2010).

These results have had important consequences for the imple-
mentation of Model Predictive Control (MPC) laws. Pre-computing
offline the explicit piecewise affine feedback policy reduces the
on-line computation for the receding horizon control law to a
function evaluation, therefore avoiding the on-line solution of a
mathematical program as it is done in Model Predictive Control.
This research has enlarged in a very significant way  the scope
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of applicability of Model Predictive Control to small-size/fast-
sampled applications (Avni, Borrelli, Katzir, Rivlin, & Rotstein,
2006; Borrelli, 2003; Falcone, Borrelli, Asgari, Tseng, & Hrovat,
2007). Since then, Prof. Morari’s group and his collaborators have
continued to push the capabilities of MPC  to faster processes.
Recently, using the capabilities of field programmable gate array
(FPGA) they have reached sampling times below five microseconds
for problems with tens to a few hundreds of variables (Jerez
et al., 2013; Jerez, Ling, Constantinides, & Kerrigan, 2012, 2012;
Mariéthoz, Mäder, & Morari, 2009).

To honor this fundamental work, we have chosen to dedi-
cate our original contribution to Professor Morari. In this paper
we prove that Model Predictive Control can be implemented by
using a simple analog circuit. We  hope that this discovery will
significantly enlarge the scope of applicability of Model Predictive
Control. In fact, the proposed approach and technology could enable
the real-time implementation of MPC  controllers on the order of
nanoseconds with very small power consumption if a VLSI (Very
Large Scale Integrated) circuit technology is used.

Analog circuits for solving optimization problems have been
extensively studied in the past (Dennis, 1959; Kennedy & Chua,
1988; Tank & Hopfield, 1986). Our renewed interests stem from
MPC  (Garcia, Prett, & Morari, 1989; Mayne, Rawlings, Rao, &
Scokaert, 2000). In MPC  at each sampling time, starting at the cur-
rent state, an open-loop optimal control problem is solved over a
finite horizon. The optimal command signal is applied to the pro-
cess only during the following sampling interval. At the next time
step, a new optimal control problem based on new measurements
of the state is solved over a shifted horizon. The optimal solution
relies on a dynamic model of the process, respects input and output
constraints, and minimizes a performance index. When the model
is linear and the performance index is based on two-norm, one-
norm or ∞-norm, the resulting optimization problem can be cast
as a linear program (LP) or a quadratic program (QP), where the
state enters the right hand side (rhs) of the constraints.

We  present the design of an analog circuit whose steady state
voltages are the LP/QP optimizers. Thevenin’s Theorem is used to
prove that the proposed design yields a passive circuit. Passivity
and KKT conditions of a tailored Quadratic Program are used to
prove that the analog circuit solves the associated LP or QP. The
proposed analog circuit can be used to repeatedly solve LPs or
QPs with varying rhs and therefore it is suited for a linear MPC
controller implementation. For some classes of applications the
suggested implementation can be faster, cheaper and consume less
power than digital implementation. A comparison to existing liter-
ature reveals that the proposed circuit is simpler and faster than
previously published designs.

The paper is organized as follows. Existing literature is discussed
in Section 2. We  show how to construct an analog circuit from a
given LP in Section 3. Section 4 proves the equivalence between the
LP and the circuit. Section 6 shows how to extend the LP results to
solve QP problem. Simulative and experimental results show the
effectiveness of the approach in Section 7. Concluding remarks are
presented in Section 8.

2. Previous work on analog optimization

2.1. Optimization problems and electrical networks

Consider the linear programming (LP) problem

min
V=[V1,...,Vn]T

cT V (1a)

s.t. AeqV = beq (1b)

AineqV ≤ bineq, (1c)

where [V1, . . .,  Vn] are the optimization variables, Aineq and Aeq are
matrices, and c, beq and bineq are column vectors. The equality and
inequality operators are element-wise operators.

The monograph by Dennis (1959) presents an analog electrical
network for solving an LP (1). In Dennis’s work, the primal and dual
optimization variables are represented by the circuit currents and
voltages, respectively. A basic version of Dennis’s circuit consists
of resistors, current sources, voltage sources, and diodes. In this,
circuit each element value of matrices Aineq and Aeq is equal to the
number of wires that are connected to a common node. Therefore,
this circuit is limited to problems where the matrices Aineq and Aeq

contain only small integer values. An extended version of the circuit
includes a multiport DC–DC transformer and can represent arbi-
trary matrices Aineq and Aeq. Current distribution laws in electrical
networks (also known as minimum dissipation of energy principle
or Kirchoff’s laws) are used to prove that the circuit converges to
the solution of the optimization problem. This work had limited
practical impact due to difficulties in implementing the circuit, and
especially in implementing the multiport DC–DC transformer.

In later work, Chua, Lin, and Lum (1982) showed a different and
more practical way  to realize the multiport DC–DC transformer
using operational amplifiers. In subsequent works, Chua (Chua &
Lin, 1984;Kennedy & Chua, 1988) and Hopfield (Tank & Hopfield,
1986) proposed circuits to solve non-linear optimization problems
of the form

min
x

f (x)

s.t. gj(x) ≤ 0, j = 1, . . .,  m,
(2)

where x ∈ R
n is the vector of optimization variables, f(x) is the cost

function, and gj(x) are the m constraint functions. The LP (1) was
solved as a special case of problem (2) (Kennedy & Chua, 1988;
Tank & Hopfield, 1986). The circuits proposed by Chua, Hopfield,
and coauthors model the Karush–Kuhn–Tucker (KKT) conditions by
representing primal variables as capacitor voltages and dual vari-
ables as currents. The dual variables are driven by the inequality
constraint violations using high gain amplifiers. The circuit capaci-
tors are charged with a current proportional to the gradient of the
Lagrangian of problem (2)

∂xi

∂t
= −

⎡
⎣∂f (x)

∂xi

+
m∑

j=1

Ij
∂gj(x)

∂xi

⎤
⎦ , (3)

where ∂xi/∂t is the capacitor voltage derivative and Ij is the current
corresponding to the jth dual variable. The derivatives ∂f/∂xi and
∂gj/∂xi are implemented by using combinations of analog electrical
devices (Jackson, 1960). When the circuit reaches an equilibrium,
the capacitor charge is constant (∂xi/∂t = 0) and Eq. (3) becomes one
of the KKT conditions. The authors prove that their circuit always
reaches an equilibrium point that satisfies the KKT conditions. This
is an elegant approach since the circuit can be intuitively mapped
to the KKT equations. However, the time required for the capac-
itors to reach an equilibrium is non-negligible. This might be the
reason for the relatively large settling time reported to be “tens of
milliseconds” for those circuits in Kennedy and Chua (1988).

2.2. Applying analog circuits to MPC problems

The analog computing era declined before the widespread use of
Model Predictive Control. Quero, Camacho, and Franquelo (1993)
have been the first to study the implementation of analog MPC.
They use the Hopfield circuit proposed in Tank and Hopfield (1986)
to implement an MPC  controller. The approach they propose is val-
idated with an experimental circuit which reaches the equilibrium
after a transient of 1.8 ms.
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