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a  b  s  t  r  a  c  t

Four  different  estimation  approaches  exploiting  sensitivities,  eigenvalue  analysis  (rotational  discrimina-
tion  and  automatic  parameter  selection  and  estimation),  reparameterization  via  differential  geometry
and  the  classical  nonlinear  least  squares  are  assessed  in  terms  of  predictivity,  robustness  and  speed.  A
Monte Carlo  methodology  is adopted  to  evaluate  the statistical  information  required  to quantify  the  inher-
ent uncertainty  of each  approach.  The  results  show  that  the  rotational  discrimination  method  presents
the  best  characteristics  among  the  evaluated  methods,  since  it requires  less  a priori  information  than
the  reparameterization  via  differential  geometry,  uses  simpler  stop  criteria  than  the  automatic  selection,
reduces  the overfitting  caused  by  the  nonlinear  least  squares  solution  and  because  it  estimates  param-
eters  with  the best predictivity  among  the  methods  tested.  Additionally,  results  suggest  that  assessing
the  goodness  of  the  estimated  parameters  solely  in the  calibration  set can  be  misleading,  and  that  the
statistical  information  obtained  from  a validation  set  is more  valuable.

© 2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

The increasing understanding of the mechanisms involved in
physico-chemical systems together with the growing computa-
tional power have promoted the intensive use of mathematical
modeling to predict the behavior of different processes under
diverse conditions spanning from molecular to plant-wide scales
(Chung, Jhon, & Biegler, 2011; Senkan, 1992). Mathematical mod-
els can be classified according to the relative amount of knowledge
of the internal mechanisms used to describe a specific process as
(Hangos & Cameron, 2001): empirical (black box), semi-empirical
(gray box) and mechanistic (white box) models. Empirical models
are entirely based on experimental input/output information with-
out taking into consideration any information about the internal
mechanisms of the system while mechanistic models are derived
from the knowledge of the basic principles governing a specific
process. Semi-empirical models are in between, since they include
both basic principles and experimental information (used to fit
purely mathematical correlations). The degree of complexity of a
model increases as it includes more basic principles, i.e., as it incor-
porates more mechanistic description.
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Theoretically while a model becomes mathematically more
complex and more mechanistic, it would potentially allow a
broader representation and prediction of a system behavior. How-
ever, the main disadvantage associated with complex models
is the amount of information (theoretical and experimental) on
the internal mechanism, hindered by the noise of the available
measurements, which widens the possible sources of uncertain-
ties. In this situation, identifiability problems are prone to take
place.

A model is said locally (globally) identifiable when the objec-
tive function (OF) of the parameter estimation problem, e.g. least
squares, has a local (global) minimum at an isolated point (Nguyen
& Wood, 1982). The identifiability of a model can be analyzed from
structural and practical points of view. The first one assesses if
the functional form of the model (model structure) permits the
determination of a unique parameter set of the parameters from
noise-free measurements while the second evaluates if the qual-
ity (e.g., measurement noise) and quantity (statistical degrees of
freedom e.g., few measured states in a bio/chemical reactor) of
the available measurements allow such a determination in practice
(Bellman & Åström, 1970; Raue et al., 2009).

Lack of structural identifiability implies lack of practical iden-
tifiability, but the opposite is not true (Miao, Xia, Perelson, & Wu,
2011), since structurally identifiable models might not be identi-
fiable in practice due to limitations imposed by the quality and
quantity of the available measurements and by the numerical dif-
ficulty to find the local minimum.
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Even if a model is structurally identifiable model predictions
can be extremely insensitive to individual parameters or to param-
eter combinations. One of the main consequences of this is the
ill-conditioning of the Hessian in the optimization problem used to
find the estimate. The ill-conditioning can make the solution of the
optimization problem impossible to evaluate (McLean & McAuley,
2012).

However, even if the solution could be calculated accurately
(in a numerical sense, i.e., if the computational precision could be
increased adequately in order to obtain precise results in spite of the
very ill-conditioning) the solution is contaminated by overfitting.
As a consequence, the regression coefficient vector estimated by
least squares is expected to be far from the true parameter vector
and negligible changes in the data can cause the least squares solu-
tion coefficients to assume very large absolute values and even to
reverse signs (Marquardt, 1970).

In order to tackle the practical identifiability problem two
approaches can be conceived, namely: obtaining more experimen-
tal information by generating more data points spanning different
experimental conditions or modifying the model estimation pro-
cedure, applying mathematical strategies without adding new
experimental data or modifying the experimental procedure.

The first approach tends to be costly, time consuming and some-
times physically infeasible, therefore a great deal of effort has been
devoted to find methods to tackle the practical identifiability prob-
lem using the least amount of experimental data.

An approach to successfully reduce uncertainty in parameters
can be obtained by providing a priori information about the phys-
ical process, model parameters or the estimator. This information
can be used to modify the model structure (e.g. model reduction,
reparameterization) or to identify a subset of identifiable parame-
ters (e.g., via sensitivity analysis) (Miao et al., 2011).

Model reduction methods aim to reduce the model complex-
ity using simplifying assumptions to decrease the number of
equations, consequently, the number of parameters that should
be estimated (Keesman, Spanjers, & Straten, 1998; Nikerel, van
Winden, Verheijen, & Heijnen, 2009; Tjärnström & Ljung, 2002). It
can be shown that this approach can be equivalent to introducing
false a priori information, but it is common practice (Le Roux, 1995).
A consequence of using model simplifications is that the reduced
model might not be used to represent a wide range of conditions
as the original one would.

In the reparameterization approach the original model is rear-
ranged grouping some parameters in order to reduce its number.
It is said that this approach, as well as the model reduction case,
requires expertise to obtain a suitable transformation (Biegler,
Damiano, & Blau, 1986; Surisetty, Hoz Siegler, McCaffrey, & Ben-Zvi,
2010). However, this problem has major analogies with the prob-
lem of finding what vectors to select as a base in a rank deficient
linear algebra problem.

Ben-zvi (2008) proposed a reparameterization method for
unidentifiable models via differential geometry, where the repa-
rameterization is implemented by developing a transformation
which partitions the parameter space into an estimable and an ines-
timable part. The estimable part of the parameter space is chosen
based on a priori information about the system. This method does
not require sensitivity calculations and is applicable over a wide
variety of experimental conditions.

Sensitivity-based methods tackle the identifiability problem by
determining the influence of the model parameters on the model
outputs. In this way, it is possible to select which parameters
should be fitted from the available information. Sensitivities can
be classified as global and local. Global sensitivities serve to quan-
tify the parameter influence over the whole search space, whereas
local sensitivities show parametric influence locally (Chu, Huang, &
Hahn, 2011; Haaker & Verheijen, 2004). The main drawback using

local sensitivities is that they may  change from point to point in the
search space, therefore there is no certitude about the real impor-
tance of a parameter in the model. This issue becomes critical when
sensitivities are used as the only criterion to decide which param-
eter subset should be adjusted using the available information. On
the other hand, global sensitivities provide an unambiguous picture
of the importance of a parameter in the model, at the expense of a
high computational cost, thus, global sensitivities are employed to
study the general behavior of mathematical models rather than to
determine a specific solution (Sobol′, 2001), which is the aim of the
present work.

Miao and coworkers (2011) report four typical local-sensitivity-
based methods: correlation method, principal component analysis
(PCA) method, eigenvalue method and orthogonal method. They
point out that the last two  methods outperform the two firsts,
because they are better designed to evaluate and compare the
influence of parameters values on the system outputs (Quaiser &
Mönnigmann, 2009).

A simple and useful eigenvalue-based method is the rotational
discrimination algorithm (Fariss & Law, 1979). This method per-
forms a decomposition of the search space, such that it projects the
least-squares direction onto a reduced space where the objective
function decreases the more, using the spectral decomposition to
deal with Hessian matrix near singularity, typical of unidentifiable
systems. Thus, the search direction restricted to a principal-
component projection helps to reduce model overfitting, compared
to an unbiased parameter estimator.

The combination of orthogonality and eigenvalue analyses gives
rise to a family of methods that automatically adjust a subset of
model parameters while keeping the other ones at some nominal
values. The challenge in this approach is to choose a parameter sub-
set to fit the model, since the available data must be used to adjust
the most relevant parameters. The objective of these methods is to
determine how many and which parameters should be chosen to
compose the subset of adjustable parameters.

Estimation methods based on automatic selection of parame-
ters have been an intensive research field. Initially, Weijers and
Vanrolleghem (1997) suggested a method to evaluate all possible
permutations of model parameters, for this, they used the determi-
nant and condition number of the Fisher Information Matrix (FIM)
to choose the best parameter subset to fit the model. Li, Henson,
& Kurtz (2004) presented a parameter ranking methodology using
eigenvalue and orthogonality criteria, this algorithm starts with a
PCA of FIM to find the most sensitive parameters, then, it continues
choosing the parameters with less linearity index in relation to the
parameters already chosen (using an orthogonality analysis), until
completing the parameter subset to adjust the model. The number
of elements in this subset was heuristically selected. Later, Lund
and Foss (2008) proposed a method to determine the ideal number
of elements in the parameter subset employing variance contribu-
tion analysis. Secchi, Cardozo, Neto, and Finkler (2006), on the other
hand, improved the algorithm created by Li et al. (2004) employing
predictability degradation and parameter correlation indexes, that
gave rise to an algorithm for automatic selection of the parameter
subset used to adjust the model.

In this work the performance of four methods representing
different parameter estimation approaches (Rotational discrimina-
tion RD (Fariss & Law, 1979), Automatic parameter selection and
estimation APS (Secchi et al., 2006), reparameterization via differ-
ential geometry RDG (Ben-zvi, 2008) and the classical nonlinear
least squares LSq) are assessed in terms of quality of the parame-
ters obtained (understood as the prediction capacity of the model
on a validation set), robustness and speed, using a Monte Carlo
(MC) strategy. The outcome of this study will be useful to evaluate
the suitability of these methods to handle unidentifiable models,
such as the ones encountered in real time optimization problems
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