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a  b  s  t  r  a  c  t

Simulation  and optimization  of chromatographic  processes  are  continuously  gaining  practical  impor-
tance,  as they  allow  for faster  and  cheaper  process  development.  Although  a  lot  of  effort  has  been  put
into  developing  numerical  schemes  for simulation,  fast optimization  and  estimation  algorithms  also  are
of importance.  To  determine  parameters  for an a priori  defined  model,  a suited  approach  is  the  inverse
method  that  fits  the  measurement  data  to the  model  response.

This  paper  presents  an  adjoint  method  to  compute  model  parameter  derivatives  for  a  wide  range  of
differentiable  liquid  chromatography  models  and  provides  practical  information  for  the  implementation
in  a  generic  simulation  framework  by  the  example  of  ion-exchange  chromatography.

The  example  shows  that  the approach  is  effective  for  parameter  estimation  of  model  proteins  and
superior  to  forward  sensitivities  in  terms  of  computational  effort.  An optimization  of peak  separation  in
salt step  elution  demonstrates  that the  method  is not  restricted  to inverse  parameter  estimation.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Chromatography modeling has a long history in academia, as it
fosters the understanding of the underlying physical and chemical
processes. The potential of modeling for industrial applications is
enormous. It ensures time- and material-efficient process devel-
opment – if and only if the parameters for a chosen model can be
determined with low sample consumption in short time.

In column liquid chromatography the sample is dissolved in a
liquid (mobile phase) and flows through a packed bed of porous
particles or a monolithic column (stationary phase). The physical
or chemical properties of the stationary phase and the different
components are utilized such that some components are retained
more strongly than others. The mass transport through the column
is described by modeling the fluid dynamics, while the retention
of the species is described by empirical or (semi-)mechanistical
models for adsorption, reactions, etc. (Michel, Epping, & Jupke,
2005). The most commonly employed models in liquid chromatog-
raphy describe the mass transport in the column by so-called
Convection-Diffusion-Reaction (CDR) equations, where the reac-
tion term models phase transitions and eventually the retention
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of the species. If no deeper insight into the retention mechanism
is available, Langmuir-type models are often employed as sub-
models for the reaction part, introducing at least two  unknown
parameters per component. With no a priori knowledge about
the components’ behavior, the inverse method is an attractive
option, which alters parameters in a systematic fashion to achieve a
match of measured chromatogram and model prediction. For some
sub-models, such as the Steric Mass Action (SMA) model for ion-
exchange chromatography of proteins (Brooks & Cramer, 1992),
model calibration protocols exist (Brooks & Cramer, 1992), which
allow for determining the component-specific parameters in a con-
secutive fashion. In a comparative study (Osberghaus et al., 2012a),
this approach and the inverse method were found to reach equal
prediction quality such that the latter is recommended for fast pro-
cess development. For other modes of protein chromatography,
e.g. hydrophobic interaction (HIC) and mixed mode chromatogra-
phy (MMC), different types of models are available. They are partly
based on thermodynamic approaches that involve hardly measur-
able quantities, e.g. for HIC (Mollerup, 2008) or MMC  (Nfor et al.,
2010). In these settings, inverse parameter estimation is the only
available option. If several models come into consideration, model
discrimination can be performed that depends even more on fast
parameter estimation techniques.

Optimization algorithms for minimizing the error between
simulation and measurements can be divided into deterministic
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and heuristic methods. Deterministic algorithms, such as steepest
descent or Newton’s method, can achieve local quadratic conver-
gence rates by using derivative information, but might get trapped
in local optima. When starting near the global optimum, they con-
stitute the methods of choice. The problem of local optima is due to
the non-linearity of most retention models. Heuristic algorithms
can leave local optima by random jumps, but require a much
larger number of model evaluations. This class includes genetic
algorithms (Xu, Zhu, Xu, Yu, & Ray, 2013) or simulated anneal-
ing (Kaczmarski & Antos, 2006). A combination of deterministic
and heuristic methods was studied in Xu et al. (2013). It repre-
sents a feasible approach in case of highly non-linear parameter
dependencies.

To use a gradient-based deterministic algorithm like Newton’s
method, the gradients or sensitivities have to be computed for each
unknown parameter. The adjoint or backward sensitivity method
was presented earlier (James, Sepúlveda, Charton, Qui nones, &
Guiochon, 1999) for an ideal model with the Langmuir isotherm
equation. This algorithm solves an adjoint equation backwards in
time, allowing to compute any parameter sensitivity by an addi-
tional integration involving the adjoint or dual solution. Later, the
approach was considered to be complicated, difficult to derive, and
error-prone (Forssén, Arnell, & Fornstedt, 2006), mostly because
of the need for additional model-specific derivatives. Instead a
refined finite difference approach was proposed, which computes
the needed sensitivities by solving one additional problem in
time per parameter. In a recent publication (Püttmann, Schnittert,
Naumann, & von Lieres, 2013), this approach was applied to com-
pute sensitivities with higher precision. Automatic differentiation
was used to avoid manual errors, but adding such routines to
an existing code requires thorough programming knowledge and
particular insight into memory management when dealing with
iterative solvers (Hascoët & Dauvergne, 2008). The achievable pre-
cision is higher compared to classical finite differences, but the
computational effort is reported to be slower by a factor of 1.4
(Püttmann et al., 2013). It is arguable, whether highest precision
is necessary throughout the whole estimation or optimization pro-
cess. Especially when starting the iteration, faster computation is
more important than exact intermediate derivatives.

For systems with a large number of component-specific param-
eters (e.g. for the target molecule, variants, fragments, aggregates,
etc.), heuristic methods as well as forward sensitivity approaches
may  be computationally expensive and intractable. We  hence
derived a general formulation of the adjoint method for differen-
tiable liquid chromatography models in the form of CDR equations,
demonstrating that the derivation is manageable for a wide range of
scenarios. The “error-prone” derivative calculation may  be accom-
plished reliably with computer algebra systems or even online
derivative calculators. We  will comment on practical implementa-
tion and in particular on re-usability of the existing code. A practical
example shows that the approach is effective and far superior to
forward sensitivities in terms of computational effort.

The approach will be demonstrated for two test cases of
SMA parameter estimation, first using four chromatograms of
cytochrome c in different gradient elutions and second using three
chromatograms of a mixture of cytochrome c, lysozyme, and chy-
motrypsin in different gradient experiments. In this study, no
multiple local minimums were observed, but long drawn-out min-
imums skew to the model parameters (Fig. 3(a)), depending on
the formulation of the SMA  model equation. This may  result in
saddle points which cause the same problems as local minimums
for algorithms only considering first-order sensitivities. To avoid
the calculation of second-order derivatives, the problem of locally
vanishing derivatives is mitigated by choosing a suitable formula-
tion of the kinetic SMA  isotherm equations, such that first order
derivatives are sufficient for successful parameter estimation.

The adjoint method can also be used in optimization algo-
rithms, for example to determine optimal process parameters
occurring in the boundary conditions. The gradients of the objec-
tive function with respect to the involved parameters (pump speed,
buffer/sample concentrations, etc.) can be computed using the
adjoint method in the same way. An example shows the peak sep-
aration optimization of the ternary mixture by determining the
optimal salt concentration for an elution step.

2. Theory

2.1. Chromatography models

A variety of models are employed depending on the phenom-
ena occurring in the respective system, but most of them can be
formulated using a common structure. Current models for column
chromatography describe the changes of concentrations in three
phases, the mobile phase concentration c, the pore phase con-
centration (mobile phase within the porous particles) cp, and the
stationary phase concentration q. Details on the derivation and an
overview of models can be found in Michel et al. (2005), Guiochon,
Shirazi, Felinger, and Katti (2006). In the following section, we will
discuss models with the general structure:

0 = F1(c, cp) = F1,1(c, cp) · c + F1,2(c, cp) · cp, (1)

0 = F2(c, cp, q) = F2,1(c, cp, q) · c+F2,2(c, cp, q) · cp + F2,3(c, cp, q) · q,

(2)

0 = F3(cp, q) = F3,2(cp, q) · cp + F3,3(cp, q) · q (3)

where the terms Fm,n are general operators in phase equation
m ∈ {1, 2, 3} that occur as pre-factor to a phase concentration c, cp,
q indicated by n ∈ {1, 2, 3}. The concentration variables are vectors
containing quantities for all considered components, e.g. c = (c0, c1,
. . .)T.

Typically, the concentration transport in the column is assumed
to be independent of the cross-sectional position, such that the
interstitial concentration only depends on the time t ∈ [0, T] and
axial position x ∈ [0, L] in a column of length L and is influenced by
convection, diffusion, and interaction with the pore phase, e.g.
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where u is the interstitial velocity, Dax the axial diffusion coeffi-
cient ((1 − εc)/εc)(3/rp)keff a coefficient modeling the effective mass
transfer rate with respect to the adsorbent particle radius rp and col-
umn  porosity εc. Several assumptions were made to consider the
velocity and axial dispersion as constant, the most fundamental
ones are a uniformly packed column, an incompressible liquid and
a constant viscosity. For a detailed discussion we  refer to Guiochon
et al. (2006). In the nomenclature of Eq. (1), the terms F1,1 and F1,2
are
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