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a  b  s  t  r  a  c  t

We  present  a stochastic  optimal  control  model  to  optimize  gas  network  inventories  in  the  face  of  system
uncertainties.  The  model  captures  detailed  network  dynamics  and  operational  constraints  and  uses  a
weighted risk-mean  objective.  We  perform  a degrees-of-freedom  analysis  to  assess  operational  flexibility
and to  determine  conditions  for model  consistency.  We  compare  the  control  policies  obtained  with  the
stochastic  model  against  those  of deterministic  and  robust  counterparts.  We demonstrate  that  the  use
of  risk  metrics  can  help  operators  to  systematically  mitigate  system  volatility.  Moreover,  we  discuss
computational  scalability  issues  and  effects  of  discretization  resolution  on economic  performance.
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1. Introduction

Consider a gas network with links comprising of long pipelines
and nodes consisting of junction points and compressors. Gas is
withdrawn from the network at a set of demand nodes and make-
up gas is brought into the system through a set of supply nodes.
In a real-time environment, the system operator must balance the
network to satisfy demand flows and delivery pressures at all times.
To achieve this balance, compressors are operated to coordinate
buildup and release of inventory inside the pipes. This procedure,
called “line-pack management” (Rachford & Carter, 2000), consists
on determining dynamic operating policies for the compressors to
balance supply, inventory, and demand. The policies must respect
compression limits and minimize compressor power or fuel. One of
the key issues arising in operations is that demand profiles cannot
be predicted with full certainty and thus inventory must be built
up, in advance, to ensure that enough capacity is available to satisfy
a range of possible future scenarios. Uncertainty in gas pipeline
operations is becoming an increasing concern as the power grid
adopts larger amounts of intermittent weather-driven resources,
because gas-fired power plant units are typically used to balance
supply at short notice (Liu, Shahidehpour, Fu, & Li, 2009; Rachford
& Carter, 2000).

Optimization of gas networks has been performed in diverse
studies. These studies differ in the decision setting and phys-
ical models used. Optimization models for mid-term planning
and contracting purposes do not require information about line-
pack dynamics so steady-state models are appropriate. O’Neill,
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Williard, Wilkins, and Pike (1979) present a steady-state transmis-
sion model. De Wolf and Smeers (2000) develop an extension of
the simplex method to solve models with this structure. An optimal
design model for pipes diameters is proposed by the same authors
in De Wolf and Smeers (1996). Martin, Möller, and Moritz (2006)
present a steady-state nonlinear transmission model that allows
for hybrid (on/off) decisions (a mixed-integer nonlinear optimiza-
tion model) and develop strategies to approximate nonlinear terms
using piecewise linear functions, thus enabling the use of mixed-
integer linear programming solvers.

For real-time operations, system dynamics must be captured in
order to ensure feasible and implementable policies. Moritz (2007)
presents a mixed-integer optimal control model with detailed con-
servation and momentum equations, network balances, and hybrid
valve and compressor components. As the author acknowledges,
however, computational limitations forced her to consider conser-
vation and momentum equations in simplified form, by defining
only inlet and output points. This is equivalent to discretizing
the underlying partial differential equations (PDEs) using two dis-
cretization points placed at the boundary nodes. Ehrhardt and
Steinbach (2005) present a nonlinear continuous optimal con-
trol model in which compressor policies are optimized to satisfy
demands and minimize compressor fuel. A full space-time dis-
cretization of the PDEs is performed and a sequential quadratic
programming algorithm is used for the solution of the resulting
nonlinear programming (NLP) problem. Steinbach (2007) proposed
the use of an interior point algorithm to solve the NLP and proposed
a strategy to exploit the underlying linear algebra structure. These
studies focused on computational performance, with limited mod-
eling and economic performance analysis. Baumrucker and Biegler
(2010) present an optimal control formulation allowing for hybrid
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behavior arising from flow reversals. The authors cast the problem
as a mathematical program with equilibrium constraints and ana-
lyze the effect of different electricity price structures on economic
performance.

None of the real-time optimization models available in the lit-
erature accounts for uncertainty, with the exception of the work of
Carter and Rachford (2003). In their work, they present a detailed
discussion of uncertainties prevailing in real-time operations and
discuss the benefits of using stochastic optimization formulations
to manage line-pack inventory. The authors provide a sound phys-
ical analysis of the resulting optimal policies; however, they do not
report the model and the solution strategy used.

In this work, we present a detailed stochastic optimal con-
trol model that considers conservation and momentum equations,
typical operational constraints, and uncertainty in demands. We
perform a degrees-of-freedom (DOF) analysis to verify the consis-
tency of the model and we use this analysis to derive consistent
initial conditions and nonanticipacity constraints. In addition, we
propose to incorporate a risk metric into the objective function to
mitigate cost variance and system volatility. Using a computational
study, we demonstrate the benefits obtained with stochastic for-
mulations against deterministic and robust counterparts and we
discuss the effects of discretization mesh resolution on economic
performance.

The paper is structured as follows. In Section 2 we present
the physical model for the pipelines, network, and compressors.
In Section 3 we present the DOF analysis to characterize the
differential and algebraic equation (DAE) system and provide con-
ditions to achieve model consistency. In Section 4 we formulate
the stochastic optimal control model by defining the objective
function, operational constraints, initial conditions, and nonantici-
pativity constraints. In Section 5 we present a computational study
to demonstrate the benefits of the stochastic model over a range
of different formulations and we discuss computational issues. The
paper closes in Section 6 with concluding remarks and directions
of future work. The model nomenclature as well as variables and
parameter units are presented in Appendix A.

2. Physical model

In this section, we present the conservation and momentum
equations governing the dynamics of each pipeline in the network
as well as the equations describing the network interconnections.
Nomenclature, physical units, and typical values for all variables
and parameters are given in Appendix A.

2.1. Conservation, momentum, and network

We  assume an isothermal gas flow through a horizontal pipe and
define a set L of pipes or links. The conservation and momentum
equations for a given link � ∈ L are given by the following set of
PDEs (Osiadacz, 1984; Van Deen & Reintsema, 1983):
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∂�

+ ∂(��(�, x, ω)��(�, x, ω))
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= 0 (2.1a)
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Here, � ∈ T := [0,  T] is the time dimension with final time T (plan-
ning horizon), and x ∈ X� := [0,  L�] is the axial dimension with
length L�. We  also define a set of scenarios ω ∈ 	 : = {1 . . N	}.
The link diameters are denoted as D� and the friction coefficients
are denoted as ��. The states of the link are the gas density

��(�, x, ω), the gas speed ��(�, x, ω), and the gas pressure
p�(�, x, ω). The transversal area A�, volumetric flow q�(�, x, ω),  and
mass flow f�(�, x, ω) are given by

A� =
1
4


D2
� (2.2a)

q�(�, x, ω) = ��(�, x, ω) A� (2.2b)

f�(�, x, ω) = ��(�, x, ω) ��(�, x, ω)  A�. (2.2c)

For an ideal gas, pressure and density are related as follows:

p�(�, x, ω)
��(�, x, ω)

= c2. (2.3)

Here, c is the gas speed of sound defined in Appendix A.1 We  trans-
form (2.1a) and (2.1b) into a more convenient form in terms of mass
flow and pressure by using (2.3) and (2.2a)–(2.2c):
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Substituting (2.3) and (2.2a) in (2.4b) and performing some manip-
ulations, we  obtain the more compact form,
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For numerical purposes, we define scaled flows f�(�, x, ω) ←
˛f f�(�, x, ω) and pressures p�(�, x, ω)  ← ˛pp�(�, x, ω), where ˛f and
˛p are scaling factors. Scaling (2.5a) and (2.5b) and rearranging, we
obtain
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= −c1,�
∂f�(�, x, ω)

∂x
, � ∈ L, � ∈ T,  x ∈ X�, ω ∈ 	

(2.6a)
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where the constants c1,�, c2,�, and c3,� are defined in Appendix A.
We now consider a network with a set N  of nodes, a set L of links,

a set S of supply flows, and a set D  of demand flows. For each node
n ∈ N  we define the set of inlet and outlet links, Lin

n := {� | rec(�) =
n}, Lout

n := {� | snd(�) = n}. Here, rec(�) is the receiving node of link �
and snd(�) is the sending node of link �. We define dem(j) as the node
at which the demand flow dj(�, ω) is located and sup(i) as the node
at which the supply flow si(�, ω) is located. Accordingly, we define
the sets For Sn := {j ∈ S | sup(j) = n} and Dn := {j ∈ D  | dem(j) = n}
for each node n ∈ N.

1 Expression (2.3) is derived by noticing that the gas speed of sound for any gas is
given by c2 = B/� where B is the bulk modulus and � is the gas density. We  also have
that B = − Vdp/dV where p is the gas pressure and V is the volume. When a sound
travels through an ideal gas, the rapid compressions and expansions can reasonably
be  expected to be adiabatic and thus we have pV� = C where � is the adiabatic con-
stant and C is an arbitrary constant. We take the derivative of p = V−� C with respect
to  V and plug the resulting expression in the expression for B. We then make use of
the gas law p/� = zRTgas/M to obtain the result (2.3).
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