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a  b  s  t  r  a  c  t

An  adaptive  gain  sliding  mode  observer  (AGSMO)  for battery  state  of  charge  (SOC)  estimation  based  on a
combined  battery  equivalent  circuit  model  (CBECM)  is  presented.  The  error  convergence  of the  AGSMO
for  the  SOC  estimation  is  proved  by Lyapunov  stability  theory.  Comparing  with  conventional  sliding
mode  observers  for  the  SOC  estimation,  the  AGSMO  can  minimise  chattering  levels  and  improve  the
accuracy  by  adaptively  adjusting  switching  gains  to compensate  modelling  errors.  To  design  the  AGSMO
for the  SOC estimation,  the  state  equations  of  the  CBECM  are  derived  to capture  dynamics  of  a  battery.  A
lithium-polymer  battery  (LiPB)  is used  to  conduct  experiments  for extracting  parameters  of the  CBECM
and  verifying  the  effectiveness  of the  proposed  AGSMO  for the  SOC  estimation.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In recent decades, the progressive increase of petrol costs and
air pollution of the exhaust fumes from petrol-driven vehicles has
stimulated a surge of research and innovation in electric vehi-
cle (EV) technologies. Lithium-ion or lithium-polymer batteries
(LiPBs) have been adopted as primary power sources in EVs due
to their merits in high power and energy densities, high operating
voltages, extremely low self-discharge rate and long cycle life in
the comparison with other types of batteries such as lead-acid or
nickel-metal hydride batteries. For the application of the batter-
ies in EVs, the state of charge (SOC) is one of the key parameters
which corresponds to the amount of residual available capacity, its
accurate indication is crucial for optimising battery energy utilisa-
tion, informing drivers the reliable EV travelling range, preventing
batteries from over-charging or over-discharging and extend-
ing battery life cycles. Unfortunately, the SOC cannot be directly
measured by a sensor as it involves in complex electrochemical
processes of a battery. An advanced algorithm is required to esti-
mate the SOC with the aids of measurable parameters of a battery
such as terminal voltage and current.

A variety of the SOC estimation techniques has been reviewed
by Piller, Perrin, and Jossen (2001) and each method has its own
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advantages in certain aspects. The ampere-hour (Ah) counting is the
most applicable approach for the SOC indication in many commer-
cial battery management systems (BMSs). It simply integrates the
battery charge and discharge currents over time and accumulates
errors caused by the embedded noises in current measurements.
Furthermore, this non-model and open-loop based method has
difficulty in determining the initial SOC value. An improved ver-
sion of the Ah counting has exhibited better SOC estimation results
by on-line evaluating charge and discharge efficiencies with the
recalibration of the cell capacity (Ng, Moo, Chen, & Hsieh, 2009).

Battery impedance measurement technique is also used for the
SOC estimation through injecting small ac signals with a wide
range of frequencies into a battery to detect the variation of battery
internal impedances (Rodrigues, Munichandraiah, & Shukla, 2000).
However, the measured impedances cannot completely model the
dynamics of batteries in the case of large discharge current in EVs.
Furthermore, the application of impedance spectroscopy has to be
carried out in temperature-controlled environment that requires
bulky and costly auxiliary equipment since the temperature signif-
icantly affects impedance curves.

Another category of the SOC estimation methods is based on
“black-box” established on machine learning strategies, which
includes artificial neural networks (ANNs) (Shen, 2007; Shen, Chan,
Lo, & Chau, 2002), fuzzy neural networks (Li, Wang, Su, & Lee, 2007),
adaptive fuzzy neural networks (Chau, Wu,  Chan, & Shen, 2003)
and support vector machine (Hansen & Wang, 2005). These data-
oriented approaches can accurately estimate the SOC  without its
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Nomenclatures

Cn nominal capacity of LiPB (Ah)
Cp polarisation capacitance (F)
eVt, eZ, eVoc, eVp estimation errors
�f1, �f2, �f3 system uncertainty terms
Ri ohmic resistance (�)
Rp polarisation resistance (�)
Z state of charge
Ẑ estimated state of charge
Voc open circuit voltage (V)
Voc(Z) open circuit voltage as a function of state of charge
Vp polarisation voltage (V)
V̂p estimated polarisation voltage (V)
V̂t estimated battery terminal voltage (V)
Vt battery terminal voltage (V)
� coulomb efficiency
�i uncertainty bounds
�̂1, �̂2, �̂3 adaptive switching gains
˙̂� 1, ˙̂� 2, ˙̂� 3 adaptive switching gains updating laws

�1, �2, �3 adaptation speed adjusting values

accurate initial state, but they require a large amount of data to
train ANNs, which leads to the large computation burden in the
BMS. Moreover, the SOC estimation results would be unpredictable
in the presence of the conditions where the current profiles in EVs
are different from those represented by the training data.

The Kalman filter (KF), as an optimal recursive estimator which
is able to estimate the states of a linear dynamic system (Ristic,
Arulampalam, & Gordon, 2004), has been developed to estimate the
SOC based on linear state space battery models (Barbarisi, Vasca, &
Glielmo, 2006). For nonlinear battery models, the enhanced ver-
sions of KF have been intensively investigated to achieve better
results for on-line SOC estimation, such as extended KF (EKF) (Dai,
Wei, Sun, Wang, & Gu, 2012; Hu, Youn, & Chung, 2012; Hu, Li, &
Peng, 2012), adaptive extended KF (AEKF) (Han, Kim, & Sunwoo,
2009), sigma-point KF (SKF) (Plett, 2006a,b) and unscented KF
(UKF) (He, Williard, Chen, & Pecht, 2013; Zhang & Xia, 2011). The
EKF utilises the first-order Taylor series expansion to linearise
the nonlinear function. This local linearisation can give rise to
large estimation errors when the degrees of nonlinearity in battery
models are significant and the covariance of process and measure-
ment noises is assumed to be constant. Adaptively updating the
covariance of process and measurement noises, the AEKF has been
developed to improve the online SOC estimation accuracy. Instead
of local linearisation, the SKF and the UKF use an unscented trans-
formation to approximate the probability density function of the
nonlinear systems with a set of sample points or so-called sigma
points. Essentially, all above-mentioned KF-based approaches are
based on the assumption that the covariance of measurement and
process noises described by a Gaussian probability density func-
tion has to be known a priori. Moreover, their complex matrix
operations may  result in numeric instabilities.

The H∞ observer based approach has also been proposed to
estimate the SOC without the requirement of the exact statistical
properties of the battery model (Zhang, Liu, Fang, & Wang, 2012).
This approach minimises the errors between the outputs of the
battery and its model so that the SOC estimation error is less than
a given attenuation level. However, in order to tackle modelling
errors and external disturbances, the feedback gain of H∞ observer
must be obtained by solving a linear matrix inequality, which may
not provide the optimal solution for ensuring tracking error con-
vergence.

More recently, sliding mode observer (SMO) based SOC esti-
mation methods were adopted to overcome battery model
uncertainties, external disturbances and measurement noises with
sufficient large switching gains (Kim, 2006; Chen, Shen, Cao, &
Kapoor, 2012). This method relies on the exhaustive understanding
of battery dynamics for the appropriate selection of the switching
gains, which lead to the trade-off between the magnitude of chat-
tering in the SOC estimation and the convergence speed to reach
the sliding mode surface and trigger the sliding motion.

In this paper, an adaptive gain slide mode observer (AGSMO)
based on a combined battery equivalent circuit model (CBECM)
has been proposed for the SOC estimation. The main advantage
of the AGSMO is that the robust behaviour of the SOC estima-
tion is guaranteed in the presence of the modelling errors, which
are considered as the bounded uncertainties. This is achieved by
dynamically adjusting the switching gain of the SMO  in response
to the tracking error while ensuring the reachability of the slid-
ing mode surface and triggering the sliding mode. Once the sliding
mode is activated, the switching gain is self-tuned to an “adequate”
level to counteract the modelling errors and reduce the chattering
levels, thereby improving the SOC estimation accuracy.

This rest of this paper is organised as follows. In Section 2, a
CBECM is presented to model the battery dynamic behaviour. In
Section 3, the AGSMO design methodology for estimating the SOC
is explained. Section 4 elaborates the procedures to extract battery
model parameters. Section 5 validates the proposed AGSMO for the
SOC estimation by experimental results and Section 6 concludes.

2. Battery modelling

A suitable battery model is essential to the development of
the model-based BMS  in real EVs, which requires less computa-
tion power and fast response to ever-changing road conditions.
Many types of models are developed to capture lithium-ion bat-
tey dynamics for various purposes (Ramadesigan et al., 2012). In
general, they can be categorised into two main groups, which
are electrochemical and equivalent circuit models (He, Xiong, &
Fan, 2011; Hussein & Batarseh, 2011; Hu, Youn et al., 2012; Hu,
Li et al., 2012). The electrochemical models describe the physical
phenomena which occur inside batteries such as the material and
charge transfer processes, ionic conduction, solid phase diffusion.
They utilise partial differential equations with a large number of
unknown parameters and thus a large amount of memory required,
which leads to long computation time and slow response. They are
usually used for battery design and simulation and hardly suitable
for the BMS  design in real EVs (Smith, Rahn, & Wang, 2010).

On the other hand, the equivalent circuit models simply consist
of resistors, capacitors and voltage sources to form a circuit net-
work, which leads to short computation time and quick response.
Furthermore, they are the circuit in nature which is easily inte-
grated into the BMS  and power control in real EVs. Various battery
equivalent circuit models have been proposed to reflect dynamic
characteristics of the battery as a result of the trade-off between
modelling accuracy and complexity (Lee, Kim, Lee, & Cho, 2008; Cho
et al., 2012; Chen, Gabriel, & Mora, 2006; Abu-Sharkh & Doerffel,
2004).

In this paper, the combined battery equivalent circuit model
(CBECM) is used to represent the dynamical behaviors of LiPB,
as shown in Fig. 1. A capacitor, Cn represents the nominal capac-
ity of the battery on the left in the model. The current source, I
denotes the discharge or charge current of the LiPB and the corre-
sponding battery terminal voltage is expressed by Vt. The voltage
across the Cn as the open circuit voltage (OCV), Voc varies in the
range of the SOC, Z from 0% to 100% and it represents the SOC of
the battery quantitatively. A resistor, Ri and a parallel-connected
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