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a  b  s  t  r  a  c  t

The  operation  of  chemical  processes  is  inherently  subject  to uncertainty.  Traditionally,  uncertainties  have
been accounted  for in  system  design  by  discretizing  the  uncertainty  space  and  considering  the  result-
ing  ensemble  of  scenarios  in  solving  the  design  optimization  problem.  Scenario-based  approaches  are
computationally  demanding  and  can  rapidly  become  intractable.  We  propose  identification-based  opti-
mization  (IBO)  as  a novel  framework  for the  optimal  design  of dynamical  systems  under  uncertainty.  Our
method  originates  in  nonlinear  system  identification  theory,  and  is  predicated  on  representing  uncertain
variables  as  pseudo-random  multi-level  signals  (PRMSs),  which  are  imposed  on  the  system  model  during
each  time  integration  step  of  a dynamic  optimization.  The  uncertainty  space  is  thus  efficiently  sampled
without  using  computationally  expensive  scenario  sets.  We  establish  a  procedure  for  generating  PRMSs
for uncertain  variables  based  on their  probability  density  functions.  The  computational  benefits  of  IBO
are  illustrated  through  comparative  case  studies.

© 2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Fluctuating market conditions and the need for switching
between an increasingly diverse portfolio of conventional and
renewable feedstock are at the origin increased uncertainty in the
operation of chemical and energy generation processes (Baldea &
Daoutidis, 2012). This translates into fluctuations in the process
variables (flow rates, pressures, temperatures, etc.) in the entire
process system. These fluctuations can lower process efficiency and
can lead to unsatisfactory product quality. It is therefore essential
that such uncertainty be accounted for at the system design stage.

The challenge of designing process systems that are capable of
coping with uncertainty has been recognized at an early stage in
process systems engineering (Biegler & Grossmann, 2004). Initial
research has focused on steady-state design, where a two-stage
approach was adopted from the operations research literature
(Ierapetritou, Acevedo, & Pistikopoulos, 1996; Pistikopoulos, 1995;
Pistikopoulos & Ierapetritou, 1995). The two-stage formulation
was subsequently extended to multi-stage approaches (Cheng,
Subrahmanian, & Westerberg, 2003; Masoumeh, Mustapha, &
Daoud, 2009; Pereira & Pinto, 1991; Verderame, Elia, Li, &
Floudas, 2010). These formulations focus on minimizing the
expected value of the design objective function. In a different
vein, chance-constrained optimization was proposed, centered
on ensuring that the probability of violating design constraints
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remains within desired limits (Arellano-Garcia & Wozny, 2009;
Lapteva, Ziyatdinov, Ostrovskii, & Pervukhin, 2010; Li, Garcia, &
Wozny, 2008; Wendt, Li, & Wozny, 2002). These methodologies
have found applications in the design of typical unit operations
(e.g., binary distillation columns Wendt et al., 2002), as well as in
process-wide settings, such as the optimization of heat exchanger
networks and reactor–separator systems (Grossmann & Sargent,
1978).

The design of dynamical systems under uncertainty has also
been studied. In this case, the uncertain variables need to be con-
sidered as functions of time, and the goal is to find a design
that minimizes the objective function and satisfies both end-
point constraints and path constraints subject to time-dependent
fluctuations in the uncertain variables. Both small-scale lumped-
parameter systems and large-scale distributed-parameter systems,
involving both continuous and integer decision variables have been
investigated using methods based on the aforementioned steady-
state optimization ideas (Bansal, Perkins, & Pistikopoulos, 2002;
Bansal, Sakizlis, Ross, Perkins, & Pistikopoulos, 2003; Mohideen,
Perkins, & Pistikopoulos, 1996, 1997).

In its most general form, the problem of optimizing a sys-
tem with uncertain parameters (expressed, e.g., in terms of the
moments of a distribution), is infinite-dimensional. Thus, solution
methods (for both steady state and dynamic problems) rely on
the discretization of the stochastic variables and the generation
of an ensemble of scenarios that must be considered simulta-
neously. Discretization augments the size of the problem, with
a corresponding increase in computational effort. Attempts at
mitigating computational challenges have spurred developments
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Nomenclature

J objective function
x state vector of the system
u vector of manipulated variables
� vector of uncertain variables
t time
h(·) equality constraints
g(·) inequality constraints
To time horizon of the design problem
d vector of design variables
z vector of decision variables
P(·) probability

 ̨ significance level
I number of inequality constraints
NSAA number of samples for the SAA approach
k sample index
�(t) a PRMS of �
q size of a Galois field
n order of a primitive polynomial
si the ith term of an m-sequence
cj coefficients of the primitive polynomial
Ts switching time
ωmax maximum frequency of the uncertain variable
ωB process bandwidth
� design parameter for frequency band
s(t) intermediate pseudo-random multi-level signal
�k discretized realization of the uncertain variable vec-

tor
wk probability of �k

�k quota of levels
� number of switches
M(·) mapping from s(t) to �(t)
�(x, t) a term in the objective function or constraints, the

integral of which depends on To

�̃(x, t) an equivalent form to the integral of �(x, t) in the
IBO formulation

xss steady state of the system
Nm length of an m-sequence
k(·) control law
p controller parameter vector
t′ shifted time variable
TPRMS length of a PRMS

at the algorithmic level using, e.g., generalized Benders decom-
position strategies (Benders, 1962) and, more recently, parallel
computing (Zhu, Word, Siirola, & Laird, 2009), as well as a quest
for more efficient sampling methods that can reduce the number
of scenarios required to accurately capture uncertainty. However,
scenario-based approaches remain time- and resource-consuming,
and the development of efficient methods for optimizing the design
of systems (in particular, dynamical systems) under uncertainty
remains an important and open problem.

This contribution introduces identification-based optimization
(IBO) as a novel framework for the optimal design of dynamical
systems under uncertainty. Our approach originates in nonlinear
system identification theory, and is predicated on representing
uncertain variables (whose probability distributions are assumed
to be known, and under additional ergodicity assumptions) as
pseudo-random multi-level signals (PRMSs), which are imposed on
the system model during each time integration step of a dynamic
optimization. This allows the system to efficiently sample the entire
span of the uncertainty space in an efficient manner without the
need for generating computationally expensive scenario sets. The

paper is organized as follows: we begin by formally stating the
problem of process optimization under uncertainty, and provide
a brief review of solution approaches published in the literature
to date. We  then describe the principle of IBO and establish a
general procedure for the generation of PRMS for any uncertain
variable given its (not necessarily normal) probability distribution.
Finally, we  illustrate the proposed framework with two process sys-
tem case studies, demonstrating significant computational benefits
compared to conventional scenario-based approaches.

2. Preliminaries

The solution of optimization problems for systems oper-
ating under uncertainty entails, (i) formulating the (infinite-
dimensional) problem, followed by (ii) converting the problem into
a deterministic, finite-dimensional (mixed-integer) (non)linear
program, which, (iii) can be solved using available optimization
algorithms. In this section, we  provide a brief account of corre-
sponding formulations and solution methods; the reader is invited
to consult available literature reviews (e.g., Sahinidis, 2004) for
further information.

2.1. Problem definition

This step involves developing a mathematical representation for
a design optimization problem from the physical realm. In particu-
lar, a dynamic model of the system under consideration should be
constructed. Information regarding the uncertain variables should
also be captured at this stage. Once these are available, a generic
formulation of the dynamic stochastic program can be written as:

min
z

J(ẋ, x, z, �, t)

s.t. h(ẋ, x, z, �, t) = 0

g(ẋ, x, z, �, t) ≤ 0

t ∈ [0,  To]

(1)

where x ∈ X  ⊂ R
x are the state variables, z ∈ Z ⊂ R

z are the (possi-
bly time-dependent) decision variables, t is time, � is the vector
of uncertain variables, J ∈ R  is the objective function, To is the
time horizon, and h and g are vector fields capturing equality and
inequality constraints; the former include the model equations
(typically in differential-algebraic equation form), while the lat-
ter amount to design constraints. We  note that solving the generic
problem (1) poses several challenges. First, it is difficult (or impos-
sible) to find a unique z such that the equality constraints hold for
all the realizations of �. Second, it is possible that the “strictest”
inequality constraint will only be active for a small number of
the possible realizations of �, which, from a practical perspective,
amounts for optimizing the system for the worst case scenario.
These challenges can be dealt with using several techniques, which
are reviewed below.

2.1.1. Multi-stage formulations
Staged formulations rely on separating the decision variables z

into two categories, the time independent design variables d, and
the time-dependent controls u. Typical examples of the former
include equipment sizes, while the latter are represented by manip-
ulated variables such as material flow rates. The essence of the
two-stage formulation is the use of control variables to reject
the impact of time-dependent uncertainties, such that excessively
large values of the design variables (i.e., equipment overdesign)
are avoided (Pistikopoulos & Ierapetritou, 1995). The two-stage
stochastic problem formulation is described mathematically as
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