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a  b  s  t  r  a  c  t

This  paper  focuses  on the  Tennessee  Eastman  (TE)  process  and  for the first  time  investigates  it  in a
cognitive  way.  The  cognitive  fault  diagnosis  does  not  assume  prior  knowledge  of  the  fault  numbers  and
signatures.  This  approach  firstly  employs  deterministic  reservoir  models  to  fit  the multiple-input  and
multiple-output  signals  in  the  TE  process,  which  map  the  signal  space  to  the (reservoir)  model  space.
Then  we  investigate  incremental  learning  algorithms  in  this  reservoir  model  space  based  on  the “function
distance”  between  these  models.  The  main  contribution  of this  paper  is to  provide  a  cognitive  solution  to
this  popular  benchmark  problem.  Our  approach  is not  only  applicable  to fault  detection,  but  also  to fault
isolation  without  knowing  the prior  information  about  the  fault  signature.  Experimental  comparisons
with  other  state-of-the-art  approaches  confirmed  the benefits  of  our approach.  Our  algorithm  is efficient
and  can  run  in  real-time  for practical  applications.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

With the development of chemical industry, chemical processes
become more complex. The product efficiency and consistency
become essential. Therefore, on-line monitoring and fault diagno-
sis are gaining more attention for produce quality and plant safety.
In recent years, there has been a lot of research in the design and
analysis of fault diagnosis schemes for different dynamic systems
(for example, Chen and Patton, 1999; Gertler, 1998). A significant
part of the research has focused on linear dynamical systems, where
it is possible to obtain rigorous theoretical results. More recently,
considerable effort has been devoted to the development of fault
diagnosis schemes for nonlinear systems with various kinds of
assumptions and fault scenarios (Zhang et al., 2002, 2005; Yan and
Edwards, 2007).

These traditional fault diagnosis approaches rely, to a large
degree, on the mathematical model of the “normal” system. If such
a mathematical model is available, then fault diagnosis can be
achieved by comparing actual observations with the prediction of
the model. Most autonomous fault diagnosis algorithms are based
on this methodology. However, for complex chemical processes
operating in dynamic environments, such mathematical models
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may  not be accurate or even unavailable at all. Therefore, it is nec-
essary to develop cognitive fault diagnosis methods based on the
real-time data.

In a typical chemical process, there are a large number of input
variables, measurement (output) variables in chemical plants.
Some of these variables are highly correlated, which increases the
difficulty to extract useful information in the diagnosis process. For
example, a significant change in output variables may  be driven
by input variables or by faults. Most of the existing data-driven
fault diagnosis approaches that rely on detection of output concept
drift using signals cannot deal with this kind of situation. The usual
methodology is to employ an estimator, such as a neural network,
to approximate the mapping from input variables to output vari-
ables. Then, the difference between the exact observations and the
predicted outputs are compared for fault diagnosis. As this method-
ology has employed the estimator to approximate the input-output
mapping, it may  reduce the false alarm rate. However, the estima-
tor can only produce accurate results when given sufficient data
in all kinds of situations, such as in the normal regime and various
fault scenarios. In a practical chemical process, it is expensive to
obtain all such data. The absence of training data would result in
low fault detection rate.

To address these problems, we  introduce a novel “learning in the
model space” framework for dealing with fault detection and fault
isolation when no or very limited knowledge is provided about the
underlying system (Chen et al., 2014). In this framework, we  do not
assume that we  know the type, the number or the functional form
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of the faults in advance. The core idea is to transform the signal
into a higher dimensional “dynamical feature space” via reservoir
computation models and then represent varying aspects of the sig-
nal through variation in the linear readout models trained in such
dynamical feature spaces. In this way parts of the signal captured in
a sliding window will be represented by the reservoir model with
the readout mapping fitted in that window.

Reservoir computing (RC) (Lukoševičius and Jaeger, 2009) is a
class of state space models based on a “fixed” randomly constructed
state transition mapping, realized through so-called reservoir and
an trainable (usually linear) readout mapping from the reservoir. In
our formulation, the underlying reservoir will be the same through-
out the signal – the differences in the signal characteristics at
different times will be captured solely by the linear readout models
and will be quantified in the function space of readout models.

We assume that for some sufficiently long initial period the sys-
tem is in a ‘normal/healthy’ regime so that when a fault occurs
the readout models characterizing the fault will be sufficiently ‘dis-
tinct’ from the normal ones. A variety of novelty/anomaly detection
techniques can be used for the purposes of detection of deviations
from the ‘normal’. In this paper we will use one-class support vector
machines (OCS) (Schölkopf et al., 2001) in the readout model space.
As new faults occur in time they will be captured by our incremen-
tal fault library building algorithm operating in the readout model
space.

The main contributions of this paper include:

• This paper for the first time investigates the cognitive fault diagno-
sis on the TE process without prior knowledge of the fault numbers
and types. To our knowledge, there is no existing work on cog-
nitive fault diagnosis on the TE process. All existing work on fault
diagnosis on the TE process relies on the assumption that all the
fault patters are known in advance.

• This paper also studies the strategy to dynamically construct fault
dictionary in real time.

The rest of this paper is organized as follows. The background
and the related work are reviewed in Section 2. Section 3 introduces
deterministic reservoir computing and the framework of “learn-
ing in the model space”, followed by the incremental one class
learning algorithm for cognitive fault diagnosis in Section 3.2. The
experimental results and analysis on Tennessee Eastman Process
are reported in Section 4. Finally, Section 5 concludes the paper
and presents some future work.

2. Background and related work

The fault diagnosis procedure can often be investigated in three
steps: (i) fault detection is the process of determining whether a
fault has occurred or not; (ii) fault isolation deals with the issue of
determining the location/type of fault; and (iii) fault identification
provides an estimate of the magnitude or severity of the fault. In
some cases, the issues of fault isolation and fault identification are
interwoven, since they both deal with determining the type of fault
that has occurred.

Most automated fault diagnosis algorithms are based on the
available mathematic models. However, for complex engineering
systems operating in uncertain environments, such mathematical
models may  not be accurate or even unavailable at all. Therefore,
it is necessary to develop cognitive fault diagnosis methods based
on the observed data.

The data driven approaches are popular fault diagnosis meth-
ods when the system models are unclear, especially in distributed
systems. A general learning methodology for fault diagnosis
of nonlinear systems was first developed by Polycarpou and

Helmicki (1995), where the stability and approximation prop-
erties of the learning scheme were rigorously investigated for
the ideal case without modelling uncertainty. There have been
other learning based approaches to fault detection and diagno-
sis, e.g. Vemuri and Polycarpou, 1997; Palade and Bocaniala, 2010;
Venkatasubramanian et al., 2003; Kankar et al., 2011. Neural
networks were used as learning algorithms for fault detection and
diagnosis, e.g. Vemuri and Polycarpou, 1997; Venkatasubramanian
et al., 2003; Palade and Bocaniala, 2010. In 2011, Barakat et al.
(2011) proposed to use self adaptive growing neural network for
faults diagnosis. They applied wavelet decomposition and used the
variance and kurtosis of the decomposed signals as features to train
neural networks.

In fault detection and diagnosis, Tennessee Eastman (TE) pro-
cess, created by the Eastman Chemical Co., has been widely used
as a benchmark for evaluating process diagnosis methods (Fig. 2).
In 2009, Yélamos et al. (2009) proposed to use support vector
machines for fault diagnosis in chemical plants. In a specific appli-
cation, neural network and support vector machines have been
employed to identify ball bearings faults (Kankar et al., 2011). Prin-
cipal component analysis (PCA) (Raich and Cinar, 1995, 1997; Kano
et al., 2000), multiway PCA (Chen and McAvoy, 1998), partial PCA
(Huang et al., 2000), nonlinear dynamic PCA (Lin et al., 2000), pat-
tern recognition (Kassidas et al., 1998), Fisher discriminant analysis
(FDA) (Chiang et al., 2004), PCA-wavelet (Akbaryan and Bishnoi,
2001), steady-state-based approach (Chen and Howell, 2002), sup-
port vector machines (SVM) (Chiang et al., 2004), and PCA-QTA
(qualitative trend analysis) (Maurya et al., 2003) have all been
applied to the TE process. Most of the previous methods are based
on multivariate statistics, and several studies have used nonlinear
or dynamic models to consider process dynamics and nonlinear-
ity (Chen and McAvoy, 1998). Although data driven methods show
good diagnostic performance, they either assume that all the fault
patterns are known a priori, or are inapplicable for unknown faults,
which is unrealistic for practical systems operating in an uncertain
environment,

The fault diagnosis framework (Chen et al., 2014) used in this
paper is able to identify new faults by employing the incremen-
tal one-class learning approach in the model space. Learning in the
model space (Chen et al., 2014) is naturally applicable to the current
industrial MIMO  system, and the framework is robust to imperfec-
tion in data/signal, such as missing values, high dimensionality, etc.

3. The framework of learning in the model space

This section introduces the recently proposed “learning in
the model space” framework (Chen et al., 2014), which includes
multiple-input and multiple-output (MIMO) signal simulated by
deterministic reservoir models, and the learning stage using incre-
mental one-class learning with the ‘model distance’ as the input
features.

3.1. Learning in the model space

Recently, Chen et al. (2014) proposed to use deterministic reser-
voir computing (DRC) (Rodan and Tiňo, 2012) to represent MIMO
signal segments and to use incremental one-class learning for fault
diagnosis. Learning in the model space is to use models fitted on
parts of data as more stable and parsimonious representations of
the data. Learning is then performed directly in the model space,
instead of the original data space.

Reservoir computing (RC) (Lukoševičius and Jaeger, 2009) is a
class of state space models based on a “fixed” randomly constructed
state transition mapping, realized through so-called reservoir and
an trainable (usually linear) readout mapping from the reservoir.
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