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a  b  s  t  r  a  c  t

This  paper  proposes  a novel  deterministic  optimization  approach  for the Unit  Commitment  (UC)  prob-
lem,  involving  thermal  generating  units.  A mathematical  programming  model  is  first  presented,  which
includes  all  the  basic  constraints  and  a set  of binary  variables  for  the  on/off  status  of each  generator  at
each  time  period,  leading  to a convex  mixed-integer  quadratic  programming  (MIQP)  formulation.  Then,
an  effective  solution  methodology  based  on  valid  integer  cutting  planes  is  proposed,  and  implemented
through  a Branch  and  Cut  search  for finding  the  global  optimal  solution.  The  application  of  the  pro-
posed  approach  is illustrated  with  several  examples  of  different  dimensions.  Comparisons  with  other
mathematical  formulations  are  also  presented.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The increasing electricity demand motivates the need to study
different operational alternatives for planning power generation
by integrating conventional generation sources with renew-
ables, while ensuring profitability (Verhaegen, Meeus, Delvaux, &
Belmans, 2007; del Río, 2011; Ventosa, Baíllo, Ramos, & Rivier,
2005; Xiao, Hodge, Pekny, & Reklaitis, 2011); as well as, ways of
improving the energy efficiency of existing power systems (Siirola
& Edgar, 2012). Furthermore, multi-period and multi-paradigm
models have also been proposed in order to plan and optimize the
energy system and components for a long time planning horizon
(Hodge, Huang, Siirola, Pekny, & Reklaitis, 2011; Zhang, Liu, Ma,
Li, & Ni, 2012; Zhang, Liu, Ma,  & Li, 2013). Recently, Soroush and
Chmielewski (2013) have presented an overview of the state of
the art and the current process systems opportunities in power
generation, storage and distribution.

Planning the generation of electric power is based on three dif-
ferent classes of decisions defined according to the length of the
planning time horizon: long-term decisions (capacity, type and
number of power generators); medium term decisions (sched-
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uling of the existing units); short-term decisions (programming of
the power that each committed unit must produce to meet the
real-time electricity demand). These three levels of decision are
usually referred to as Power Expansion, Unit Commitment (UC)
and Economic Dispatch, respectively. The UC problem has been
more widely studied due to its practical importance (Yamin, 2004;
Padhy, 2004). Moreover, this problem has diverse applications in
the chemical engineering area, for example in Mitra, Grossmann,
Pinto, and Arora (2012) the UC constraints were applied to air sep-
aration plants to decide when to turn on and off compressors and
liquefiers.

The UC can be formulated as a mathematical program-
ming problem using different alternative models. Implementing
schedulings based on the optimal solutions of these models, may
result in significant economic savings. However, solving the UC
problem is very difficult. In fact, this problem is a mixed integer
programming problem, linear or nonlinear, that is well known to
be NP-hard due to the exponential computational time that may
be required in the worst case (Nemhauser & Wolsey, 1988). A large
effort has been spent over the last few decades to develop efficient
methods capable of solving the UC problem for real industrial cases
in practical computational times.

This paper focuses on the thermal UC problem. The solution
methods proposed in the literature for solving this problem are
either deterministic or heuristic. Approaches based on determinis-
tic methods include: priority list (Senjyu, Shimabukuro, Uezato,
& Funabashi, 2003), integer mathematical programming (linear
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Nomenclature

Indexes
i unit index
t time period index

Constants
I total number of thermal generating units
T length of the planning time horizon
ai, bi, ci coefficients of the fuel cost function of unit i
Dt power load demand for time period t
Rt spinning reserve required at time period t
pL

i
minimum power generation of unit i

pU
i

maximum power generation of unit i
TUi minimum uptime of unit i
TDi minimum downtime of unit i
Tini

i
initial status of unit i

DRi ramp-down limit of unit i
URi ramp-up limit of unit i
SDi maximum shutdown rate of unit i
SUi maximum startup rate of unit i
Hsci hot start cost of unit i
Csci cold start costs of unit i
Tcold

i
cold start hours of unit i

Dci shut-down cost of unit i
costUP upper bound for the objective function
εabs absolute tolerance for global optimality
εrel relative tolerance for global optimality
Aopt1

t objective value of the optimal solution of problem
P1 for time period t

Aopt2
t objective value of the optimal solution of problem

P2 for time period t
ALO

t lower bound for the number of committed units at
time period t

AUP
t upper bound for the number of committed units at

time period t

Variables
ui,t binary variable representing the on/off status of unit

i at period t
pi,t power output of unit i in period t
cui,t start-up cost of unit i in period t
cdi,t shut-down cost of unit i in period t
At auxiliary variable for computing integer cutting

planes

and nonlinear) (Cohen & Yoshimura, 1983; Rajan & Takriti, 2005;
Carrión & Arroyo, 2006; Frangioni, Gentile, & Lacalandra, 2009;
Zondervan, Grossmann, & de Haan, 2010; Ostrowski, Anjos, &
Vannelli, 2012), dynamic programming (Ouyang & Shahidehpour,
1991), Lagrangian relaxation (Ongsakul & Petcharaks, 2004;
Frangioni, Gentile, & Lacalandra, 2011; Dieu & Ongsakul, 2011)
and other decomposition techniques (Habibollahzadeh & Bubenko,
1986; Niknam, Khodaei, & Fallahi 2009). However, few of these
proposed methods guarantee global optimality. As for heuris-
tic approaches, the most widely used are: artificial neural
networks (Sasaki, Watanabe, Kubokawa, Yorino, & Yokoyama,
1992), genetic algorithms (Kazarlis, Bakirtizis, & Petridis, 1996;
Swarup & Yamashiro, 2002), evolutionary programming (Juste,
Kita, Tanaka, & Hasegawa, 1999; Chen & Wang, 2002), simulated
annealing (Simopoulos, Kavatza, & Vournas, 2006), fuzzy systems
(El-Saadawi, Tantawi, & Tawfik, 2004), particle swarm optimization
(Ting, Rao, & Loo, 2006; Oñate Yumbla, Ramirez, & Coello Coello,
2008), tabu search (Mantawy, Abdel-Magid, & Selim, 1998) and

hybrid methods (Cheng, Liu, & Liu, 2000; Mantawy, Abdel-Magid,
& Selim, 1999).

Yamin (2004), Padhy (2004) and Sen and Kothari (1998) give
complete reviews for contributions on deterministic and heuristic
methodologies for solving the UC problem. Nevertheless, the meth-
ods proposed so far are not always able to solve real world problems
to optimality in acceptable computational times.

In this paper a new deterministic optimization approach is pro-
posed for the thermal UC problem. The problem addressed can be
stated as follows: given a number of thermal power generators
(differing in their operating and production characteristics) and
a specified time-variant demand over the planning time horizon,
determine for each unit the start-up and shut-down schedules and
the power production, in order to minimize the operational costs
while meeting demand.

The mathematical model is a convex mixed-integer quadratic
programming problem (MIQP) for which a Branch and Cut method
is proposed that takes advantage of the characteristics of the UC
problem.

The paper is organized as follows. Section 2 presents a detailed
description of the mathematical formulation for the thermal UC
problem. Section 3 describes the proposed deterministic opti-
mization approach, outlining in Section 3.1 the steps to construct
the proposed integer cutting planes. In Section 3.2 a particular
implementation of the general Branch-and-Bound framework is
described. Section 4 presents computational tests with the pro-
posed optimization approach. In Section 4.1, the performance of
the proposed integer cutting planes is illustrated. In Section 4.2
three application examples are presented with the proposed tech-
nique, compared with other deterministic methods, and alternative
mathematical formulations. Finally, Section 5 draws the general
conclusions.

2. Mathematical problem formulation

The thermal UC problem is formulated as the following MIQP
model. Consider a set of I thermal generating units and a specified
time-varying demand over T time periods defining the planning
time horizon, with the units being indexed with i = 1,. . .,I and the
time periods with t = 1,. . .,T. The mathematical programming model
involves I × T binary variables: ui,t; and 3(I  × T) continuous vari-
ables: pi,t, cui,t and cdi,t; for i = 1,.  . .,I and t = 1,. . .,T.

The objective function to be minimized is the operating cost,
which includes fuel consumption calculated by a quadratic function
with fixed charges, and fixed start-up and shut-down costs:

min  cost =
I∑

i=1

T∑
t=1

[(aiui,t + bipi,t + cip
2
i,t) + cui,i + cdi,t] (1)

The constraints to be satisfied are given by (2)–(20).
Satisfying power demand for each time period:

Dt ≤
I∑

i=1

pi,t t = 1, . . .,  T (2)

Spinning reserve is guaranteed by the available capacity of
active units:

Dt + Rt ≤
I∑

i=1

pU
i ui,t t = 1, . . .,  T (3)

The generation power limits of each unit at each time period are
given by:

ui,tp
L
i ≤ pi,t ≤ pU

i ui,t i = 1, . . .,  I; t = 1, . . ., T (4)
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